
Fuzz Testing Projects in Massive Courses
Sumukh Sridhara

UC Berkeley
sumukh@berkeley.edu

Brian Hou
UC Berkeley

brian.hou@berkeley.edu

Jeffrey Lu
UC Berkeley

jeffreylu017@gmail.com
John DeNero
UC Berkeley

denero@berkeley.edu

ABSTRACT
Scaffolded projects with automated feedback are core instruc-
tional components of many massive courses. In subjects that
include programming, feedback is typically provided by test
cases constructed manually by the instructor. This paper ex-
plores the effectiveness of fuzz testing, a randomized tech-
nique for verifying the behavior of programs. In particu-
lar, we apply fuzz testing to identify when a student’s solu-
tion differs in behavior from a reference implementation by
randomly exploring the space of legal inputs to a program.
Fuzz testing serves as a useful complement to manually con-
structed tests. Instructors can concentrate on designing tar-
geted tests that focus attention on specific issues while us-
ing fuzz testing for comprehensive error checking. In the
first project of a 1,400-student introductory computer science
course, fuzz testing caught errors that were missed by a suite
of targeted test cases for more than 48% of students. As a re-
sult, the students dedicated substantially more effort to mas-
tering the nuances of the assignment.

ACM Classification Keywords
K.3.2. Computers and Education: Computer and Information
Science Education; Computer science education

Author Keywords
automated assessment; behavioral analytics; online learning

INTRODUCTION
Assignments that provide automated feedback to students are
a core instructional tool in many massive courses [8, 18]. In
technical subjects that involve programming, such as com-
puter science and data science, assignments often ask students
to implement a program according to a specification. Feed-
back is generated automatically by an autograder, a program
that executes test cases against a student’s implementation
[12, 6, 13]. The test suite is typically constructed manually by
the course instructors, with some tests distributed to students
and some tests held out for assessment. This paper describes

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.
L@S 2016, April 25–26, 2016, Edinburgh, Scotland Uk
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3726-7/16/04 . . . $15.00
DOI: http://dx.doi.org/10.1145/2876034.2876050

how fuzz testing [15] can complement manually constructed
test cases to improve the feedback provided to students.

Fuzz testing involves randomly generating inputs to a pro-
gram and then verifying some property of the output or pro-
gram behavior. For example, this technique is often applied
to find inputs on which a program will crash. In the context of
large-scale education, randomized testing can be used by an
autograder to verify that the output generated by a student’s
submission to a programming assignment matches the output
produced by a reference implementation created by the in-
structor [19]. This paper describes the conditions necessary
for fuzz testing to be used for autograding, as well as an ar-
ray of options for distributing fuzz tests to students without
exposing the instructor’s reference implementation.

Programming assignments and automated feedback are often
the primary mechanisms by which massive courses encour-
age students to explore the technical details of a subject. In
such settings, test cases provide two complementary services
to students. Targeted test suites highlight particular known
points of confusion, often using simple inputs for which the
correct output can be generated easily by hand. Comprehen-
sive test suites attempt to detect all deviations from the spec-
ification. Targeted tests are helpful in providing preliminary
feedback to students, while comprehensive tests encourage
students to continue working on the assignment until it is
completed correctly. When a comprehensive test suite fails
to detect an error, the student may stop attempting to improve
her or his submission. As a result, the student may inadver-
tently miss the learning opportunity of identifying and cor-
recting the error.

To explore the impact of fuzz testing, we studied the behavior
of students in a large on-campus CS 1 course with 1,400 en-
rolled students, CS 61A at UC Berkeley1. We focused on
their first substantial programming project, which students
completed either alone or in pairs. The most challenging
question in the project asked students to write a function that
simulates playing a dice game. Students were provided with
both a manually constructed suite of targeted test cases and a
fuzz test. Our autograder recorded each partial solution sub-
mitted for testing, so we were able to study students’ progress
through the problem.

We found that adding a fuzz test dramatically increased the
number of incorrect solutions identified. More than 48% of

1cs61a.org.

1

mailto:Permissions@acm.org
http://dx.doi.org/10.1145/2876034.2876050

students created and tested a partial solution that passed the
targeted test suite, but still contained a logical error identified
by the fuzz test. Many random inputs were required to detect
these errors; 6% of the errors we found were not discovered
until more than 500 random inputs were explored.

Fuzz tests are easy to construct and distribute using the strate-
gies we describe in this paper. They proved to be an effective
complement to manually created tests even for a basic assign-
ment: the first project in a CS 1 course. Our study of how
students behave in a large-scale class provides compelling ev-
idence that fuzz testing should be included regularly in auto-
graded programming assignments.

AUTOGRADING
For many successful massive open online courses (MOOCs),
programming projects are distributed with autograders that
provide comprehensive feedback about the correctness of a
student’s implementation. These projects are not primar-
ily used for assessment, but rather to maximize the instruc-
tional value of completing the assignment [4]. All students
are encouraged to revise their project submissions until they
are correct, and in the process they are exposed to impor-
tant concepts from the course. Many popular programming-
based MOOCs include comprehensive autograders, such as
Algorithms2, Coding the Matrix3, Foundations of Computer
Graphics4, Machine Learning5, and many others.

Several design issues arise in the construction of autograders
that are relevant to the use of fuzz testing as described in this
paper.

Test Distribution
Autograder tests can be distributed with a project or applied
by an instructional server when an assignment is submitted.
The advantages of distributing tests with a project are that
they can be run offline, the computation required to execute
the tests is distributed to students’ machines, and students
who do not want to share their progress with instructors due to
privacy concerns still have access to test cases. However, one
challenge of distributing tests to students is that they cannot
include a solution to the project without potentially exposing
that solution to the student.

Assessment
Not all test suites distributed with programming projects are
designed to be comprehensive. Indeed, a common practice in
programming-based courses is to withhold certain test cases
for assessment. Students are sometimes encouraged to gener-
ate their own test cases to verify their implementations before
submitting their work. These alternatives to comprehensive
testing are certainly a proper fit for certain courses, but in
this paper we focus on tests distributed to students that are in-
tended to provide comprehensive evaluations of correct pro-
gram behavior.

2www.coursera.org/course/algs4partI
3www.coursera.org/course/matrix
4courses.edx.org/courses/BerkeleyX/CS 184.1x
5www.coursera.org/learn/machine-learning

Targeted Tests
When designing the test suite of an autograder, it can be valu-
able to consider more than just comprehensive test coverage;
instructors may also seek to provide guidance that properly
matches each stage of a student’s development process. We
call any test case that isolates a particular issue a targeted test.
Targeted tests complement comprehensive tests by focusing
students’ attention on particular details within a large pro-
gram. These tests are often designed to make students think
about certain edge cases that they may overlook in a first pass
through an implementation.

Fully quantifying the value of targeted tests is beyond the
scope of this paper, but in constructing our evaluation of fuzz
testing we also discovered some evidence that targeted tests
are a valuable complement to comprehensive tests. In the
Spring 2015 offering of CS 61A, students were provided only
with comprehensive tests for the question we describe later
in the paper. In the Fall 2015 offering, they were provided
with both targeted tests and comprehensive tests. When pro-
vided no targeted tests (Spring 2015), the median time be-
tween starting this question and passing at least one test case
was 55 minutes. When provided targeted tests (Fall 2015),
the median time to passing at least one test case was greatly
reduced to 14 minutes. Targeted tests provide timely posi-
tive feedback that students are making progress in the correct
direction.

Summary
Although the space of possible autograder designs is large,
we focus on the particular setting in which a test suite is dis-
tributed to students with the project. The test suite includes
both targeted tests to focus attention on key issues and com-
prehensive tests that attempt to detect all deviations from the
assignment specification. The purpose of fuzz testing is to
improve comprehensive tests while simplifying their devel-
opment.

FUZZ TESTING
Fuzz testing—testing the behavior of a program on many ran-
dom inputs—was first described as a technique to discover
errors in mature UNIX tools [15]. Generating random in-
puts was sufficient at that time to crash 25-33% of core util-
ity programs from various distributions of UNIX. This orig-
inal paper aptly remarked that fuzz testing is best viewed as
a complementary technique to conventional testing in which
specific inputs are chosen manually by a programmer. A va-
riety of work has improved and extended the original idea
of fuzz testing, e.g. [7, 14]; randomized fuzz testing is now
standard practice in software engineering [3]. The relative
value of random testing is typically high compared to its im-
plementation cost [11, 16]. Creating fuzz tests is often far less
effort-intensive than designing tests manually.

Application
Fuzz tests are commonly used to assess the security of a pro-
gram given some randomized inputs [5, 10]. During exe-
cution, the program state is monitored to ensure that secu-
rity constraints are maintained. In common usage, fuzz tests
watch for a specific behavior (such as a buffer overflow or

2

program crash), often ignoring the actual output of the pro-
gram. The correct output for a random input is often un-
known, because no reference implementation exists for most
programs being tested in this way. By contrast, when apply-
ing fuzz testing to programming projects, a reference imple-
mentation (the instructor solution) often exists. With a ref-
erence implementation, we can apply fuzz testing to student
submissions to test for correctness.

Creating and Distributing Fuzz Tests
Any program can be fuzz tested for correctness as long as the
behavior of the program for a space of inputs is uniquely de-
fined by the assignment specification. The behavior of the ref-
erence implementation must be deterministic, and the specifi-
cation of the implementation must precisely resolve any pos-
sible sources of non-determinism (such as breaking ties in a
maximization).

To fuzz test student code, the autograder must programmati-
cally feed random input into the student’s program. Since the
input domain for the program is known, an instructor can eas-
ily generate valid inputs. Existing work on fuzz testing tools
provides a variety of strategies for the generation for complex
inputs [9, 2, 20].

These inputs alone help verify that the program does not crash
on valid inputs, but do not verify correctness of the program.
Instead, some mechanism must provide access to the correct
response for a random test according to the reference imple-
mentation, but without distributing the reference to students.

Our solution is to generate one set of random fuzz tests using
a fixed random seed. The same set of tests is distributed to all
students, ensuring fair and consistent autograder responses
across multiple autograder runs, while maintaining the sim-
plicity of randomly generated tests. We compute the correct
response for each test according to the reference implemen-
tation to obtain the expected fuzz test output. The following
options describe methods in which this expected output can
be distributed.

1. Raw Output. This approach provides students with the
reference implementation’s raw output for each fuzz test
input. The reference output is compared to the output gen-
erated by the student’s program. Since each run of the au-
tograder tests the same inputs, it is possible for students to
hard-code their implementation to pass the fuzz test, with-
out fully completing the assignment.

2. Obfuscated Output. Obfuscating the random inputs and
outputs is one method to discourage students from hard-
coding their answer to match the correct fuzz test outputs.
Students are only informed whether their implementation
passes or fails a sequence of fuzz tests, with no further in-
formation.

To implement this behavior, students are given the en-
crypted output of the instructor solution, rather than the
raw output. The encrypted output can be computed using
a one-way hash function H that combines all fuzz test out-
puts for the instructor solution, fuzz (solution), and pro-
duces a hash hcorrect = H(fuzz (solution)). A student’s

implementation is correct if their hash H(fuzz (student))
matches hcorrect .

3. Traces. If the internal state of the student’s code can be
inspected by the autograder, it is possible to provide even
more detailed feedback to the student. Specifically, the au-
tograder can not only state that a specific fuzz test failed,
but rather exactly when the internal state differed from the
reference state. This level of detail requires that tests in-
clude a serialized list of all program states in the trace.
This additional information allows fuzz tests to pinpoint
the places in which a student’s implementation deviates
from the reference, as with a targeted test, without requir-
ing careful test generation from the instructor.

4. Hidden. It is also possible to keep the fuzz tests hidden
from student view, instead choosing to apply fuzz tests as
a way to assess student progress and identify frequent er-
rors. Instructors can use these data to alter their assign-
ments accordingly. If desired, the instructors can publish
the most common errors as well as test cases that highlight
these errors. Knowing the most common incorrect outputs
allows instructors to determine common bugs and more ef-
fectively address student questions either in-person or on-
line. This information becomes more important in massive
classes as the observed set of unique incorrect implemen-
tations grows large.

5. Final Assessment. Fuzz tests are useful for assessing the
correctness of submitted assignments, even if the fuzz tests
are never distributed to students. Using fuzz tests for as-
sessment saves the effort of constructing new tests for each
course offering. In some courses, test cases that are used
to assign a student’s grade are never released to students,
even after scores are assigned, in part due to the effort re-
quired to generate new test cases for future course offer-
ings. However, when students are not provided with the
inputs that caused their program to fail, they lose the op-
portunity to understand why they were penalized. Com-
municating fuzz tests to students does not compromise the
set of hidden tests available for future course offerings.

IMPLEMENTATION
We explored the use of fuzz testing in an autograder by adding
a fuzz test to an existing manually created test suite of the first
project in a CS 1 course. We distributed the fuzz test using the
Obfuscated Output method described in the previous section.

The Game of Hog
The first project in our CS 1 class is implementing a simulator
for the game of Hog [17]. In Hog, two players alternate turns
trying to be the first to end a turn with at least 100 total points.
On each turn, the current player chooses some number of dice
to roll, up to 10. That player’s score for the turn is the sum of
the dice outcomes. There are some additional rules to make
the game more exciting to play and challenging to implement.

We used a fuzz test to verify student implementations of the
game’s main simulation loop, the fifth of ten questions in the
project. This main loop updates the players’ scores after each

3

Students Attempting Project 1,392
Students Attempting Target Question 1,355
Students Completing Project 1,331
Code Snapshots 486,482
Average Snapshots Per Student 349
Incorrect Attempts at Target Question 48,079
Snapshots with Fuzz Test Errors 22,375

Figure 1. Collected Dataset

roll of the dice. CS 1 students find this question challeng-
ing to implement because they must use iteration to simu-
late each turn of the game, modify multiple variables, and
apply functions that were implemented in previous parts of
the project. Our students commonly struggle with off-by-one
errors where they simulate an additional turn after the game
should have ended, infinite loops where their games never end
as a result of forgetting to modify variables, or incorrect score
updates.

The number of possible inputs to this function is extremely
large because each player can roll a number of dice between
0 and 10 for all 104 game states, creating at least 1010 unique
inputs to define the players’ strategies.6 Attempting to ver-
ify the correctness of a student implementation by enumer-
ating all legal inputs is infeasible. However, fuzz tests are
an easy way to augment hand-designed test cases to provide
better coverage of the input space. In our implementation,
the random input dictated both players’ strategies and all dice
outcomes.

Autograder Interface
Project source files are distributed with a suite of test cases
and an open-source autograder called OK7. Students use OK
to run correctness tests on their implementation after unlock-
ing conceptual questions [1]. Every question has several
instructor-designed test cases to provide students with tar-
geted feedback on the correctness of their solution. Students
are strongly encouraged to correct their solutions to pass all
test cases before progressing to the next question.

Students can run the provided tests on a particular question
as often they would like. Each time students run the tests,
a snapshot of their code, as well as metadata about which
question they are working on and the number of tests that
their solution passes, is sent to the OK server. These snapshots
allow us to continuously monitor student progress, which we
have used to develop a large dataset of in-progress work, as
seen in Figure 1.

After running OK on a particular question, students receive
feedback on the correctness of their program. When students
fail a test case, OK displays the test that triggered the failure,
the expected value, and the student’s returned value. This
interface provides students with enough information to start
debugging their error. Once their solution passes all tests for
a question, students know it is safe to proceed to the next
question.
6If a random sequence of dice outcomes is included in the input as
well, the space of possible inputs grows much larger still.
7okpy.org

0

12500

25000

37500

50000

Question Number
0 1 2 3 4 5 6 7 8 9

All Correct Some Correct None Correct

5

Figure 2. The distribution of attempts on each question of Hog. In the
Fall 2015 offering of the course, we provided both targeted tests and fuzz
tests for Question 5.

0

8750

17500

26250

35000

Question Number
0 1 2 3 4 5 6 7 8 9

All Correct Some Correct None Correct

5

Figure 3. The distribution of attempts on each question of Hog. In the
Spring 2015 offering of the course, we provided only a few manually de-
signed fuzz tests for Question 5. This offering had approximately 30%
fewer students than Fall 2015, so the vertical axis has been scaled ac-
cordingly.

Figure 2 (Fall 2015) and Figure 3 (Spring 2015) show how
often students ran the autograder to check their solutions for
each question of Hog in two separate offerings of the course.
For each question, we classify each attempt to pass the auto-
grader into three scenarios: no test cases passed (“None Cor-
rect”), some test cases passed (“Some Correct”), and all test
cases passed (“All Correct”). The question that we have tar-
geted for fuzz testing is Question 5. It is the most challenging
question on the project and therefore requires a large number
of autograder runs before passing all tests. In our project, a
question refers to a subtask of the project that has tests for
correctness.

Student Experience
We investigated student experience of the fuzz test by observ-
ing the number of questions asked about the fuzz test on the
class forum. The online Q&A forum, called Piazza, allows
students to ask questions of their peers and instructors. The
median response time for public posts about the project was
27 minutes for peer responses and 37 minutes for an instruc-
tor response.

Our choice to obfuscate the output of the fuzz test signifi-
cantly increased the amount of time required for the instruc-

4

tors to assist a student with a question about the fuzz test, both
in office hours and on Piazza. Due to the obfuscated output,
students’ only recourse for help if they were failing the fuzz
test was to share their code in office hours or make a private
post with their code attached for instructors to view. There
were 86 such private posts (which is about 1 post for every
8 students who failed the fuzz test). The median time for a
response from an instructor to these posts was 2.3 hours due
to the difficulty of identifying the student’s error in the large
space of potential errors identified by the fuzz test.

In a midterm survey with 1,245 responses, 575 students
(46%) reported spending at least one hour trying to debug
errors caught by the fuzz test; 19% reported spending more
than four hours. 346 students (28%) responded that they did
not fail the fuzz test or did not remember the fuzz test.

EVALUATION
We first quantified how fuzz testing complemented our man-
ually constructed test cases by measuring the number of stu-
dents who passed all of our manually constructed test cases
but failed the fuzz tests.

Student Fuzz Test Design
We designed a fuzz test that simulates 100 games of Hog.
Before distributing the project, we randomly generated 100
fuzz test inputs and evaluated the staff solution on each of
these inputs. We computed a hash from the 100 staff solution
outputs, which we then distributed to students along with the
targeted tests.

Usage Pattern
For the question that we analyzed, students were provided
with a sequence of 9 targeted tests, as well as the fuzz test
described above, which was executed only after the students
passed the previous 9 tests.

This analysis excludes students who opted out of uploading
progress as well as those who worked on the project without
running the provided tests.

Fuzz Test Evaluation
To analyze the effects of additional fuzz tests on detecting stu-
dent errors, we developed a larger fuzz test than the one dis-
tributed to students originally. We randomly generated 1,000
test inputs. We graded all snapshots in which students mod-
ified the originally provided code for the target question, re-
sulting in a total of 173,468 snapshots of student code.

For each snapshot, we evaluated the student code on all 1,000
fuzz test inputs, producing a vector of 1,000 student outputs.
We assumed that if two snapshots produced the same output
vector, they contained the same logical errors. The snapshots
that we examined manually all validated this assumption.

Figure 4 shows the frequency of the most common logical er-
rors. Each bar represents one response vector, ordered from
most to least common. The figure shows that the 10 most
common logical errors account for 41% of snapshots with er-
rors. The 50 most common errors account for 71% of snap-
shots. Figure 5 describes the logical errors that resulted in

0

400

800

1200

1600

Figure 4. The 50 most common errors revealed by the fuzz test followed
by a long tail of 1,185 other errors (not shown). Each bar represents
the frequency of one output vector. We assumed that if two snapshots
produced the same output vector, they contained the same logical errors.

Rank Snapshots Logical Error
1 1,502 Did not modify returned variables

2 1,171 Incorrectly determined tens digit
for numbers larger than 100

3 1,156 Incorrectly determined tens digit
for single-digit numbers

4 925 Did not switch player after turns
5 867 Classified 2 as a nonprime number
6 854 Stopped after two turns
7 789 Did not apply a rule in some cases
8 759 Did not implement a rule
9 637 Stopped after one turn

10 594 Gave all points to one player
Figure 5. The 10 most common errors revealed by the fuzz test.

the ten most common errors. However, a long tail of stu-
dent errors account for a small but significant number of snap-
shots. In total, the fuzz test discovered 1,235 distinct errors.
This large number of unique errors is consistent with previ-
ous work in applying fuzz tests to evaluate open-ended pro-
gramming questions: A system that used a fixed error model
to identify the differences between student and reference im-
plementations could only find a difference conforming to the
model in 65% of cases, indicating a large space of possible
logical errors [19].

In a massive course, fuzz tests can identify groups of students
that have the same logical error, even when that error is quite
rare. Finding these groups can be helpful to the students by
connecting them with each other and helpful to instructors
who can attempt to assist all of them at once.

Infrastructure
To analyze data from fuzz tests at this scale, we created an
autograding infrastructure that dynamically adjusts capacity
based on demand. During our use, it was capable of testing
more than 5,000 submissions per minute (each running a fuzz
test with 1,000 inputs). This throughput can be used to gen-
erate quick analysis of student progress for instructors.

5

1. Results Database. We use a cluster of three virtual ma-
chines running Redis (a key-value datastore) to store the
results.

2. Job Queue. Each of the 173,468 student code snapshots is
inserted into a job queue that is also backed by the Redis
cluster.

3. Grading Containers. All of the grading happens inside
of a Docker container that is sandboxed from the host ma-
chine and has all of the dependencies to grade the project
pre-installed.

4. Grading Servers. Virtual Machines run 10 workers that
each grab snapshots from the job queue, launch grad-
ing containers, and communicate the results to the results
database. Grading is a CPU intensive operation which re-
quires relatively powerful virtual machines. We reduce
costs by 70% through the usage of Preemptible Instances
that may be terminated at any time. This an acceptable
tradeoff because any lost work is easily recomputable.

5. Autoscaling. Google Compute Engine was configured to
automatically adjust the number of grading servers based
on average CPU load of the existing servers. This results
in the system rapidly creating many grading servers, each
of which results in 10 new workers. Once grading was
completed, the machines were automatically terminated to
reduce costs.

The job took about three hours to complete and utilized ap-
proximately fifty distinct virtual machines. The total cost of
the grading servers was $7.53, showing that fuzz testing is lo-
gistically feasible for grading in massive classes, despite the
distributed infrastructure required for fast analysis.

Results
After analyzing the in-progress work of students, we discov-
ered that 656 students (48.4% of students who attempted the
question) were able to write code that passed the 9 manually
constructed tests, but still contained a logical error identified
by the fuzz test. Without this feedback from the fuzz test,
half of the course would have progressed with incorrect im-
plementations.

Figure 6 shows the distribution of attempts made by students
in this group before finally passing the provided fuzz test. The
median time for a student to resolve an error revealed in a
fuzz test was 3.4 hours. This time stands in stark contrast
to the median time of 18 minutes to resolve errors revealed in
targeted tests. We attribute this difference to both the compre-
hensiveness of fuzz tests at finding errors (seen in Figure 4)
as well as the obfuscation of the fuzz test output provided to
students.

In Figure 7, we analyze how additional fuzz test inputs help
detect additional bugs. First, all snapshots are tested with
1,000 inputs. Snapshots that produce a different output vec-
tor than the reference solution are labeled as incorrect. Then,
we determine how many incorrect snapshots match the ref-
erence solution for the first k fuzz tests inputs. When only
one fuzz test input is considered (k = 1) against 22,375 snap-
shots with an incorrect implementation, only 16,010 (71.6%)

N
um

be
r

of
 S

tu
de

nt
s

0

35

70

105

140

Attempts Required to Fix Error
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30

Fuzz Test Targeted Test

Figure 6. Distribution of attempts required by students to resolve errors
for each test type

1 2 5 10 25 50 100 200 500 1000
Number of Inputs (Log Scale)

0

1000

2000

3000

4000

5000

6000

7000

N
um

be
r

of
Fa

ls
e

Po
si

ti
ve

s

Error 3

Error 2

Errors 1, 4-10

Figure 7. As the number of fuzz test inputs increases, more snapshots
are revealed to have errors. The sharp drops are labeled with the error
from Figure 5 that was caught by that test input.

are identified as containing a logical error. The fuzz test that
we provided to students only contained 100 inputs. Figure 7
shows that this was insufficient to catch all student errors. The
first 100 fuzz tests only caught 92.7% of snapshots with er-
rors. Therefore, some students were given full credit without
a correct solution.

In addition, Figure 7 shows that some fuzz test inputs are
more useful for detecting errors than others. For example, in-
puts 105 to 545 were unable to detect many more errors than
the first 104 inputs alone. However, input 546 tested a rare
scenario where students were asked to find the tens digit for a
three-digit number, rather than a two-digit number. Because
the fuzz test inputs are randomly sampled from the space of
inputs, these uncommon scenarios may not be tested until a
large number of inputs are randomly generated.

CONCLUSION
Fuzz testing student submissions by comparing their output
on random inputs to the output of a reference implementation
is both easy to implement and effective for comprehensive
testing. When combined with targeted tests that are manu-
ally constructed to identify common issues, test suites can
enhance the instructional value of programming projects by
guiding students to correct implementations. Our empirical

6

evaluation exposed some surprising results: fuzz testing iden-
tified errors that were missed by hand-crafted tests in almost
half of student implementations. A small number of random
inputs was insufficient for identifying errors; many submis-
sions matched the reference for hundreds of random inputs
before diverging. The number of unique errors that arose
in the one programming problem we studied was enormous:
1,235 unique errors among 1,355 students. With such a va-
riety of possible issues that may arise in programming prob-
lems in a large course, fuzz testing should be considered an
essential tool for providing automated feedback at scale.

Acknowledgements
This work was supported by a Google Research Cloud Cred-
its Award.

REFERENCES
1. Basu, S., Wu, A., Hou, B., and DeNero, J. Problems

before solutions: Automated problem clarification at
scale. In Proceedings of the Second (2015) ACM
Conference on Learning@ Scale, ACM (2015),
205–213.

2. Becker, S., Abdelnur, H., Obes, J. L., State, R., and
Festor, O. Improving fuzz testing using game theory. In
Network and System Security (NSS), 2010 4th
International Conference on, IEEE (2010), 263–268.

3. Bounimova, E., Godefroid, P., and Molnar, D. Billions
and billions of constraints: Whitebox fuzz testing in
production. In Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, IEEE
Press (Piscataway, NJ, USA, 2013), 122–131.

4. DeNero, J., and Klein, D. Teaching introductory
artificial intelligence with pac-man. In Proceedings of
the Symposium on Educational Advances in Artificial
Intelligence (2010).

5. Dormann, W., and Plakosh, D. Vulnerability detection in
activex controls through automated fuzz testing.
Unpublished working paper (2008).

6. Edwards, S. H., and Perez-Quinones, M. A. Web-cat:
automatically grading programming assignments. In
ACM SIGCSE Bulletin, vol. 40, ACM (2008), 328–328.

7. Forrester, J. E., and Miller, B. P. An empirical study of
the robustness of windows nt applications using random
testing. In Proceedings of the 4th Conference on
USENIX Windows Systems Symposium - Volume 4,
WSS’00, USENIX Association (Berkeley, CA, USA,
2000), 6–6.

8. Glassman, E. L., Singh, R., and Miller, R. C. Feature
engineering for clustering student solutions. In
Proceedings of the First ACM Conference on Learning
@ Scale Conference, L@S ’14, ACM (New York, NY,
USA, 2014), 171–172.

9. Godefroid, P., Kiezun, A., and Levin, M. Y.
Grammar-based whitebox fuzzing. In Proceedings of the

29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, PLDI ’08, ACM
(New York, NY, USA, 2008), 206–215.

10. Godefroid, P., Levin, M. Y., Molnar, D. A., et al.
Automated whitebox fuzz testing. In NDSS, vol. 8
(2008), 151–166.

11. Hamlet, D., and Taylor, R. Partition testing does not
inspire confidence (program testing). IEEE Trans. Softw.
Eng. 16, 12 (Dec. 1990), 1402–1411.

12. Hollingsworth, J. Automatic graders for programming
classes. Commun. ACM 3, 10 (Oct. 1960), 528–529.

13. Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O.
Review of recent systems for automatic assessment of
programming assignments. In Proceedings of the 10th
Koli Calling International Conference on Computing
Education Research, Koli Calling ’10, ACM (New York,
NY, USA, 2010), 86–93.

14. Miller, B. P., Cooksey, G., and Moore, F. An empirical
study of the robustness of macos applications using
random testing. In Proceedings of the 1st International
Workshop on Random Testing, RT ’06, ACM (New
York, NY, USA, 2006), 46–54.

15. Miller, B. P., Fredriksen, L., and So, B. An empirical
study of the reliability of unix utilities. Commun. ACM
33, 12 (Dec. 1990), 32–44.

16. Pacheco, C., Lahiri, S. K., Ernst, M. D., and Ball, T.
Feedback-directed random test generation. In
Proceedings of the 29th International Conference on
Software Engineering, ICSE ’07, IEEE Computer
Society (Washington, DC, USA, 2007), 75–84.

17. Parlante, N., Zelenski, J., Dodds, Z., Vonnegut, W.,
Malan, D. J., Murtagh, T. P., Neller, T. W., Sherriff, M.,
and Zingaro, D. Nifty assignments. In Proceedings of
the 41st ACM Technical Symposium on Computer
Science Education, SIGCSE ’10, ACM (New York, NY,
USA, 2010), 478–479.

18. Piech, C., Sahami, M., Huang, J., and Guibas, L.
Autonomously generating hints by inferring problem
solving policies. In Proceedings of the Second (2015)
ACM Conference on Learning @ Scale, L@S ’15, ACM
(New York, NY, USA, 2015), 195–204.

19. Singh, R., Gulwani, S., and Solar-Lezama, A.
Automated feedback generation for introductory
programming assignments. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language
Design and Implementation, PLDI ’13, ACM (New
York, NY, USA, 2013), 15–26.

20. Tsankov, P., Dashti, M. T., and Basin, D. Secfuzz:
Fuzz-testing security protocols. In Proceedings of the
7th International Workshop on Automation of Software
Test, AST ’12, IEEE Press (Piscataway, NJ, USA, 2012),
1–7.

7

	Introduction
	Autograding
	Test Distribution
	Assessment
	Targeted Tests
	Summary

	Fuzz Testing
	Application
	Creating and Distributing Fuzz Tests

	Implementation
	The Game of Hog
	Autograder Interface
	Student Experience

	Evaluation
	Student Fuzz Test Design
	Usage Pattern
	Fuzz Test Evaluation
	Infrastructure
	Results

	Conclusion
	Acknowledgements

	References

