
Problems Before Solutions:
Automated Problem Clarification at Scale

Soumya Basu
UC Berkeley

soumyab@berkeley.edu

Albert Wu
UC Berkeley

albert12132@berkeley.edu

Brian Hou
UC Berkeley

brian.hou@berkeley.edu

John DeNero
UC Berkeley

denero@berkeley.edu

ABSTRACT
Automatic assessment reduces the need for individual feed-
back in massive courses, but often focuses only on scoring
solutions, rather than assessing whether students correctly un-
derstand problems. We present an enriched approach to au-
tomatic assessment that explicitly assists students in under-
standing the detailed specification of technical problems that
they are asked to solve, in addition to evaluating their solu-
tions. Students are given a suite of solution test cases, but
they must first unlock each test case by validating its behav-
ior before they are allowed to apply it to their proposed so-
lution. When provided with this automated feedback early
in the problem-solving process, students ask fewer clarifica-
tory questions and express less confusion about assessments.
As a result, instructors spend less time explaining problems
to students. In a 1300-person university course, we observed
that the vast majority of students chose to validate their un-
derstanding of test cases before attempting to solve problems.
These students reported that the validation process improved
their understanding.

Author Keywords
automated assessment; behavioral analytics; online learning

INTRODUCTION
Instructors of massive courses must be frugal and efficient
with their attention to individuals in all aspects of course de-
livery. For assignments, automatic assessment of solutions
can dramatically reduce or even eliminate the individual at-
tention required for assigning scores, allowing instructors to
focus on content delivery and interaction design. This pa-
per describes the scaling benefits of another form of auto-
mated assessment for technical assignments: automatic ver-
ification of problem understanding. By validating each stu-
dent’s understanding of each problem statement automati-

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.

L@S 2015, March 14–18, 2015, Vancouver, BC, Canada.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-3411-2/15/03 ... $15.00
http://dx.doi.org/10.1145/2724660.2724679

cally, our system substantially reduces the instructor interven-
tion required for clarification and explanation of assignments.

This paper describes a particular implementation of our ap-
proach to validating problem understanding. Our system,
called OK1, performs automatic assessment for programming-
based assignments. Each assignment in our course is dis-
tributed with a suite of test cases that are designed to verify
a student’s proposed solution; OK applies these test cases and
summarizes the results. However, students are not able to
view these results unless they first validate their understand-
ing of each test case. As a result, they cannot check their
solution until after they demonstrate that they are at least at-
tempting to solve the right problem.

Through an interactive process, the student is presented with
a series of short-answer questions that ask about the potential
behaviors of their program. Each question corresponds to a
“locked” test case. By responding with the correct intended
behavior, they “unlock” the test case and can then apply it to
their proposed solution.

This unlocking process is designed to encourage students to
understand details of the problem specification fully before
attempting to develop a solution. Automating this process
gives students instant feedback about their interpretation of
each problem’s description, feedback that is intended to re-
duce the amount of time that students spend developing so-
lutions for misinterpreted variants of a problem. We found
that students overwhelmingly chose to validate their problem
understanding using our system before attempting to solve
each problem. In addition, 78% of students responded posi-
tively to the system in an end-of-semester survey, despite the
fact that unlocking test cases is an extra step in the process of
completing their projects.

Creating an unlocking process for an assignment requires
only a small amount of additional effort beyond the creation
of test cases for automatic assessment, but provides substan-
tial time savings. When students more often arrive at correct
interpretations of problems independently and have increased
confidence in their interpretation, they ask fewer clarificatory
questions. For example, forum questions about one problem

1OK is hosted on https://okpy.org. Open-source development
is hosted on https://github.com/Cal-CS-61A-Staff/ok.

https://okpy.org
https://github.com/Cal-CS-61A-Staff/ok

in our course decreased by 79% in the semester after we de-
ployed OK. Adding the unlocking process to all major as-
signments helped us scale our introductory computer science
course2 from 500 to 1300 students per semester in three years.

RELATED WORK
The sheer scale of massive open online courses (MOOCs)
has increased demand for tools and techniques that auto-
mate aspects of course administration. Automated assess-
ment now extends beyond multiple-choice to include free-
response short answers [1]. Assessment at scale has also suc-
cessfully leveraged the large pool of enrolled students as a
source of human judgment [9]. These innovations in assess-
ment allow for broader flexibility in assignment design.

The purpose of assignments is not only to assess progress,
but also to support learning, and assessment is integral to the
learning process [2]. Assignments are useful to students in
validating their understanding [13]. In addition, assignments
and their assessments highlight and even influence learning
goals of a course [5]. Open-ended assignments that require
integration of past concepts with current concepts are partic-
ularly effective for learning and retention [8]. This collection
of prior research highlights the value of designing assessment
systems that support learning directly. When learning to solve
technical problems, a student will ideally receive feedback
throughout the problem solving process.

Considerable prior research has focused on automated assess-
ment of programming-based assignments, which are typically
found in computer science courses, but increasingly appear
in other technical fields. Automated assessment of program-
ming assignments was first suggested more than 50 years ago
[6]. In a recent survey, Ihantola et al. identify a wide range
of recent features in automated program assessment systems,
including test case construction assistance, submission man-
agement, automated scoring, and security features [7]. No-
ticeably absent from these features is any attempt to specif-
ically provide feedback about problem understanding, rather
than student solutions.

To scale a course to a massive size, instructors often rely on
peer forums to assist students in understanding assignments.
Indeed, online forums have been hailed as an essential com-
ponent of a massive course [12]. However, the forums in mas-
sive courses often raise their own challenges. Mak et al. de-
scribe how large differences in skill between novices and ex-
perienced students can lead to friction and frustration among
students, often requiring instructor moderation to maintain a
productive discussion [12]. They found that half of students
stopped participating in online forums, primarily because of
“unacceptable behavior” from other participants. In our ex-
perience, peer forums can be particularly hostile to students
who ask clarificatory questions that are similar to previous
questions. Online forums certainly have a central role to play
in massive courses, but the need for problem clarification may
be addressed more effectively using an automated system that
allows students to reach understanding independently or in
small groups.
2https://cs61a.org

SOLVING TECHNICAL PROBLEMS
Technical problems appear in many disciplines and many va-
rieties, but we focus here on problems that have descriptions
written in natural language (e.g., English), but have solutions
expressed in a formal language. For such problems, vali-
dating solutions is typically straightforward: the formal lan-
guage is interpreted by a computer, which judges correctness
based on a series of criteria. While programming problems
are the focus of this paper, our approach could also apply
to other assignments that use formal languages, such as con-
structing a logical proof.

Solving technical problems is an acquired skill that chal-
lenges many students. We seek to teach our students an effec-
tive multi-stage problem-solving process, and the OK system
is designed to encourage and support that process.

Step 1: Problem Understanding
The first step in solving a technical problem is to understand
the required properties of the solution from the problem de-
scription. Beyond just reading the prose, problem under-
standing involves identifying corner cases, clarifying details,
and considering interactions with existing implementations.

For programming problems that involve implementing a
function, the textbook How to Design Programs suggests first
writing down a data representation, then writing down the
purpose of the function, then illustrating its use with exam-
ples, then taking inventory of available inputs to the function
[3]. All of these activities are examples of problem under-
standing, and they are useful activities that occur before any
attempt at solving the problem.

In our experience, students often attempt to forego this step
and focus immediately on writing a solution. With only a so-
lution assessment tool at their disposal, they may attempt to
reach a satisfactory solution through a process of trial-and-
error. By contrast, including an automated assessment tool
that explicitly targets this stage of the process not only en-
courages problem understanding before solution attempts, but
also highlights problem understanding as a skill to be learned
as part of a technical course.

Step 2: Planning
This second step involves developing a solution strategy,
which may involve stating a natural language description or
choosing among possible approaches. At this stage, the prob-
lem is understood, but the mechanics of how to solve it are
still undetermined.

Assessment can also have a role to play here. The approach
to designing a general solution can often be inspired by cer-
tain illustrative examples. The OK system asks students to
predict the intended behavior of a program for specific cases.
In doing so, they must work by hand through the process of
computing some desired result. In our experience, selecting
examples judiciously can provide automated guidance toward
a solution.

We do not attempt to evaluate this effect, as the activity of
solution planning is particularly difficult to measure. Indeed,

https://cs61a.org

past research has shown that hinting toward solutions does
not necessarily improve student performance [10].

Step 3: Implementation
Finally, the plan must be expressed in the formal language
required to satisfy the original problem. In programming
assignments, this step requires detailed knowledge of a pro-
gramming language.

If steps 1 and 2 are carried out successfully, automatic as-
sessment of solutions is often sufficient to support students in
this final stage. Small issues with language syntax or bound-
ary conditions can be identified by applying a suite of well-
designed test cases. The OK system also provides this sup-
port, as do many other automated assessment tools.

Solution assessment can also provide feedback about earlier
stages, as students may identify issues with their solution plan
or problem understanding based on the failure of a solution
test case. However, this feedback is only offered after the
student has invested significant time developing a proposed
solution. Moreover, students who misunderstand a problem
may fail to attribute a test case failure to this earlier misun-
derstanding. Therefore, we hypothesized that providing ear-
lier feedback would be beneficial to students.

EXAMPLE PROBLEMS
The remainder of this paper describes the details and empiri-
cal evaluation of the OK system, focusing on its application to
a single programming assignment that was used in our course
before and after deploying OK.

The assignment involves implementing a simulator and sev-
eral strategies for a jeopardy dice game called Hog [11]. In
this game, players alternate turns in which they select some
number of dice and roll them to score points. If at least one
of the dice outcomes is 1, then the current player scores only
1 point that turn. Otherwise, the player scores the sum of the
dice outcomes.

The first problem in the assignment is to implement a func-
tion called roll_dice that computes a player’s score on a
single turn, using the player’s choice of how many dice to roll
and a random function that simulates each roll. The descrip-
tion of the problem includes a specification of exactly how
many times to simulate a dice roll, a detail often overlooked
by students.

The second problem we consider in our evaluation, which ap-
pears near the end of the project, is to implement a function
called swap_strategy. This function encodes a strategy
for playing the game by specifying how many dice to choose
under various score conditions. The strategy can be illustrated
effectively using a handful of test cases.

This assignment is implemented in Python. Students are
given less than two weeks to complete all problems, which
are released together during the second week of the course.
The Appendix contains further details of the parts of the as-
signment used in our evaluations.

Last login: Sun Feb 1 16:43:55 on ttys002
Soumyas-MBP:hog Soumya$ python3 ok -q 01 -u
===
Assignment: Project 1: Hog
OK, version v1.3.10
===

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unlocking tests

At each "? ", type what you would expect the output to be.
Type exit() to quit

---------------------------------------------------------------------
Question 1 > Suite 1 > Case 1
(cases remaining: 4)

>>> roll_dice(2, make_test_dice(4, 6, 1))
? 3
-- Not quite. Try again! --

? 10
-- OK! --

---------------------------------------------------------------------
Question 1 > Suite 1 > Case 2
(cases remaining: 3)

>>> roll_dice(3, make_test_dice(4, 6, 1))
? 
-- Exiting unlocker --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Running tests

Question 1 > Suite 1 > Case 1

>>> from hog import *
>>> roll_dice(2, make_test_dice(4, 6, 1))

Error: expected
10
but got

Question 1
 Passed: 0
 Failed: 1
 Locked: 3
[k..........] 0.0% passed

There are still unlocked tests! Use the -u option to unlock them

Test summary
 Passed: 0
 Failed: 1
 Locked: 3
[k..........] 0.0% passed
Backing up your work...
Soumyas-MBP:hog Soumya$

Figure 1. An unlocking session where the student wishes to unlock ques-
tion 1, initially provides an incorrect response, then provides a correct
response.

SYSTEM DESIGN
The design of the OK assessment system includes a student
interface, an instructor interface, and a mechanism for test-
case locking and unlocking.

Interface for Students
The OK system integrates two kinds of assessments in a sin-
gle interactive text-based interface presented in a terminal
window and invoked from the command line.3 Initially, test
cases are locked, and the only available assessment focuses
on problem understanding. As a byproduct of the understand-
ing assessment, test cases are unlocked and become available
for solution assessment.

Students start an assessment by selecting a problem. They are
free to run the assessments at any time, before or after they at-
tempt to implement a solution. When developing the system,
we hoped that students would run the understanding assess-
ment before attempting to solve the problem; observational
results in the next section show that this order does indeed
hold for most students.

Figure 1 contains a screenshot of this initial assessment,
which we call an unlocking session. The system presents the
student with a series of short-answer questions. Most of these
questions consist of an expression to be evaluated and are an-
swered by typing the correct value of the expression accord-
ing to the problem description. In this example, the intended
result is 10, the score received in a game of Hog by rolling a
4 and a 6. If the student is able to correctly state the intended
result, then the interface advances to the next question. When
students respond incorrectly, they are prompted to try again.
This phase of the assessment is unaffected by whether or not
the student has attempted a solution.

3The system could easily be adapted to the web, but one of our
course goals is to build students’ competence with command-line
interfaces.

Last login: Sun Feb 1 16:32:18 on ttys002
Soumyas-MBP:hog Soumya$ python3 ok -q 01
===
Assignment: Project 1: Hog
OK, version v1.3.10
===

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Running tests

---------------------------------------------------------------------
Question 1 > Suite 1 > Case 1

>>> from hog import *
>>> roll_dice(2, make_test_dice(4, 6, 1))

# Error: expected
#     10
# but got
#     

---------------------------------------------------------------------
Question 1
    Passed: 0
    Failed: 1
    Locked: 3
[k..........] 0.0% passed

There are still locked tests! Use the -u option to unlock them

---------------------------------------------------------------------
Test summary
    Passed: 0
    Failed: 1
    Locked: 3
[k..........] 0.0% passed
Backing up your work...
Soumyas-MBP:hog Soumya$ Figure 2. While there are still some tests that are locked, the OK system
applies only the unlocked test cases for each question, but also reports
the number of test cases that are still locked.Last login: Sun Feb  1 16:47:38 on ttys001
Soumyas-MBP:hog Soumya$ python3 ok -q 5 -u
=====================================================================
Assignment: Project 1: Hog
OK, version v1.3.10
=====================================================================

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Unlocking tests

At each "? ", type what you would expect the output to be.
Type exit() to quit

Question 5 > Suite 1 > Case 1
(cases remaining: 12)

Q: The variables score0 and score1 are the scores for both
players. Under what conditions should the game continue?
Choose the number of the correct choice:
 0) While score0 and score1 are both less than goal
 1) While at least one of score0 or score1 is less than goal
 2) While score0 is less than goal
 3) While score1 is less than goal
? 3
-- Not quite. Try again! --

Choose the number of the correct choice:
 0) While score0 and score1 are both less than goal
 1) While at least one of score0 or score1 is less than goal
 2) While score0 is less than goal
 3) While score1 is less than goal
? 0
-- OK! --

Question 5 > Suite 1 > Case 2
(cases remaining: 11)

Q: If strategy1 is Player 1's strategy function, score0 is
Player 0's current score, and score1 is Player 1's current
score, then which of the following demonstrates correct
usage of strategy1?
Choose the number of the correct choice:
 0) strategy1(score0, score1)
 1) strategy1(score0)
 2) strategy1(score1)
 3) strategy1(score1, score0)
?
-- Exiting unlocker --

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
Running tests

---------------------------------------------------------------------
Question 5 > Suite 2 > Case 1

>>> import hog
>>> hog.four_sided = hog.make_test_dice(1)
>>> hog.six_sided = hog.make_test_dice(3)
>>> always = hog.always_roll
>>> hog.play(always(5), always(5))
(0, 0)

# Error: expected
#     (106, 46)
# but got
#     (0, 0)

---------------------------------------------------------------------
Question 5 > Suite 2 > Case 2

>>> import hog
>>> hog.four_sided = hog.make_test_dice(1)
>>> hog.six_sided = hog.make_test_dice(3)
>>> always = hog.always_roll
>>> hog.play(always(2), always(2))
(0, 0)

# Error: expected
#     (57, 104)
# but got
#     (0, 0)

---------------------------------------------------------------------
Question 5 > Suite 2 > Case 3

>>> import hog
>>> hog.four_sided = hog.make_test_dice(1)
>>> hog.six_sided = hog.make_test_dice(3)
>>> always = hog.always_roll
>>> hog.play(always(2), always(10))
(0, 0)

# Error: expected
#     (7, 126)
# but got
#     (0, 0)

---------------------------------------------------------------------
Question 5 > Suite 2 > Case 4

>>> import hog
>>> hog.four_sided = hog.make_test_dice(1)
>>> hog.six_sided = hog.make_test_dice(3)
>>> always = hog.always_roll
>>> hog.play(always(0), always(0))
(0, 0)

# Error: expected
#     (74, 106)
# but got
#     (0, 0)

---------------------------------------------------------------------
Question 5 > Suite 2 > Case 5

>>> import hog
>>> hog.four_sided = hog.make_test_dice(1)
>>> hog.six_sided = hog.make_test_dice(3)
>>> always = hog.always_roll
>>> hog.play(always(0), always(2))
(0, 0)

# Error: expected
#     (108, 94)
# but got
#     (0, 0)

---------------------------------------------------------------------
Question 5 > Suite 2 > Case 6

Figure 3. For this test case, it is rather difficult to predict the intended
behavior without writing a program to do so. Therefore, we include con-
ceptual questions in order to check the student’s understanding, rather
than requiring a tedious amount of computation by hand.

Each correctly answered question unlocks a corresponding
test case. In Figure 1, the test case would evaluate a call to
roll_dice using the student’s implementation and report
whether or not the result matched the intended result of 10.

After unlocking one or more test cases for a question, the stu-
dent can run a solution assessment, as shown in Figure 2. This
phase has the typical behavior of an automated program as-
sessment tool. The student’s solution is loaded automatically
from the current directory. Test cases are executed in order.
Each test case failure generates a description of the problem,
typically comparing the expected and observed results.

Interactive questions to assess understanding are not limited
to evaluating Python expressions. Some problems are suffi-
ciently complex so evaluating an example by hand is arduous
or unfeasible. Despite this constraint, the system can validate
problem understanding by asking conceptual multiple-choice
or short-answer questions. An example of a conceptual ques-
tion is shown in Figure 3. In this example, rather than supply-
ing the value of an expression, the student selects an answer
choice. To dissuade random guessing, the order of answer
choices is randomized.

Interface for Instructors
Instructors create test cases for both types of assessment:
problem understanding and solution verification. However,
the unlock-then-apply structure allows the same test case to
be used for both phases of assessment. As a result, the addi-
tional effort required from the instructor to support both kinds
of assessment is minimal, beyond the effort required just for
solution assessment.

The only additional work needed is to construct the concep-
tual questions that substitute for particularly complex test
cases. For the Hog project, we created 58 test cases and 5
conceptual questions. Thus, the only additional instructional
effort came from designing the 5 conceptual questions and
deciding which test cases were too complicated to predict by
hand. In OK, test cases are specified as string pairs indicating
expression and value, along with a small amount of set-up
and comparison code.

Unlocking Mechanism
The design of the underlying unlocking mechanism was cho-
sen to satisfy several constraints. First, we wanted to make
sure that the unlocking phase was not trivial to circumvent
by students. Second, we wanted to ensure that the test cases
were correct once unlocked. In this way, all tests remain re-
liable, so students don’t have to determine whether or not an
issue lies within their implementation or the test itself. Our
design makes it very difficult to extract the answers from the
codebase while making sure that using the resulting answers
only creates valid test cases for their solutions. In addition
to the above, we designed our system to run locally on each
student’s computer, so that students can proceed through the
project without a network connection.

Our mechanism relies on hashing in order to meet these con-
straints. Specifically, the staff knows every question Q (an
input to a test case) and the answer to each question, A (the



output to a test case). Let H be an irreversible hash func-
tion. We chose a hash-based message authentication code
(MAC) [4]. The instructor distributes both Q and H(A) to
the students, along with the OK system which includes an im-
plementation of H . When the student provides a guess G for
a question, OK computes H(G). If H(G) = H(A), then we
assume G = A and use G as the test-case output for Q.

Our hash-based unlocking mechanism provides a fully-local
way to check student answers for our questions. In addition,
the mechanism has proven resilient to any method of unlock-
ing test cases automatically without knowing the correct re-
sponses, as far as we have been able to observe.

EVALUATION
We sought to measure the effectiveness of our approach on
two dimensions: whether or not the instructor workload actu-
ally decreased and whether or not students used the unlocking
system and found it valuable. In order to measure whether or
not the instructor workload decreased, we monitored the class
forum and kept track of the number of questions asked.

We measured our students’ experience in two ways. First,
we checked to see whether or not students were unlocking
in the correct stage of the problem solving process—at the
beginning. Then, we looked at the types of questions that
were asked on the class message board. Finally, we asked the
students how helpful they found the unlocking process in an
online survey.

Usage Pattern
Students had the option to attempt a solution before assessing
their understanding or vice versa. The OK system allowed us
to measure this ordering directly. With permission from stu-
dents, the system would send both their solution progress and
unlocking session information to an instructional server. We
received data on whether the student was unlocking a ques-
tion or not, what question they were unlocking, and which
problems they had attempted to solve from the assignment.

Our analysis was complicated by the fact that not all unlock-
ing sessions were reported to the server. Students had the
option of unlocking tests for all problems at once; if they did
so, we collected no data. Students could also choose not to
share their session data with us. In addition, students may
have started to implement solutions in a way that we could
not record. To determine when a student started a question,
we looked for edits to the files submitted to our server by OK.
It is possible that students began solutions in another external
file, in which case we would have been unable to detect their
progress. However, we believe that very few students did so,
because of convenience. When students edited the files we
tracked, they could easily check their solutions using OK.

For all of these events, we recorded the time when they hap-
pened, which allowed us to assess whether or not students
unlocked test cases before attempting to solve problems.

In this class, we had 1287 students who received grades for
this project and 1272 students who sent usage statistics to our
server for at least one problem—the completion rate is lower
than these numbers suggest because some students dropped

Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

Question Number

N
u

m
b

e
r 

o
f 
S

tu
d

e
n

ts

0
4

0
0

8
0

0
1

2
0

0 Students with Data
Unlock First
No data

Figure 4. The total number of students who provided unlocking data for
each question, as well as the number of students that interacted with the
autograder, but did not provide data for that question.

the class during this project. Usage statistics were not col-
lected when students opted out or had a slow network con-
nection; attempts to contact our server were limited to less
than a second.

Figure 4 shows the fraction of students for which we have
data who unlocked test cases for a problem, verifying their
understanding, before attempting to solve the problem. For
Question 1, 88% of students unlocked the test cases before
they started writing code. That fraction increased to 99.5%
by the end of the project, where almost all students unlocked
test cases before attempting a solution.

While these numbers are encouraging, we also note the large
number of students with no unlocking data, and we believe
that some of these students might also not follow our expected
behavior. However, even a pessimistic assumption where all
unknown students fail to follow our expected behavior shows
that 70% to 79% of students meet our expectations, which is
still a strong majority.

The usage statistics show students are using the unlocking
mechanism at the beginning of the problem solving process,
implying that it is serving its true purpose.

Class Forum
In our course, we use the Piazza online forum. A student can
make a post with his or her question and receive a response
from one of the staff members or a fellow student, usually in
under an hour. The average response time in our course is
about 11 minutes.

Due to the short response times, different students often make
similar posts because they have the same misunderstanding
about the project specifications. One common use of Piazza
is for students to post their autograder test failures and ask for
debugging help. If the initial response does not fully answer
their question, then they are able to post a follow-up question.

To evaluate changes in student behavior, we counted and clas-
sified posts about two problems from the Hog assignment
described earlier. In Fall 2013, students received test cases



roll_dice(fa13) roll_dice(fa14) swap_strategy(fa13) swap_strategy(fa14)

Question(Semester)

N
u

m
b

e
r 

o
f 
Q

u
e

s
tio

n
s

0
5

1
0

1
5

2
0

Conceptual questions
Other questions

Figure 5. Number of forum questions posted about each problem, by
semester. Each bar shows the total number of questions on Piazza, clas-
sified as conceptual questions (misunderstanding or clarification of the
problem) or other kinds of questions.

embedded in a source code file, but they were not explicitly
encouraged to read those tests. In Fall 2014, similar test cases
were provided, but students had to unlock them before using
them to check correctness. We focused our analysis on two
problems that students historically had trouble understand-
ing, roll_dice and swap_strategy. We classified all
forum posts about these two problems as either conceptual
questions (misunderstanding or clarification of the problem)
or other questions (usually issues with implementation).

To find all of the relevant posts, we looked at all forum posts
that were posted after the project was released until when the
project was due. Two of this paper’s authors independently
went through all of the posts related to the project for each
problem. A post was only classified for that problem if it
specifically asked about that problem, not whether the final
issue was actually in that problem. Both authors indepen-
dently decided whether or not the question was a misunder-
standing or clarification of the problem description (or some
other type of question) based on the response and any follow-
up questions that were asked. After finishing classification,
the authors compared their judgments for each question and
resolved discrepancies through discussion.

In the posts from Fall 2014, we classified questions that asked
for help unlocking the tests as conceptual questions. Since
students’ Piazza questions about these two problems were
usually a result of misunderstanding the prompt, we expected
to see fewer questions asked about them.

In Fall 2013, we had 1011 students with a submission for this
project. In Fall 2014, we had 1287 students. Despite this 27%
increase in students, Figure 5 shows that the number of forum
posts about these questions decreased substantially. In par-
ticular, Piazza questions about swap_strategy dropped
significantly after unlocking was introduced. In addition,
we have observed that many forum questions are repeated in
other settings as well (discussion sections and office hours).
These results imply that significant instructor time was saved
through other venues.

1 2 3 4 5

How helpful was unlocking tests?

Helpfulness

N
u

m
b

e
r 

o
f 
re

s
p

o
n

s
e

s

0
2

0
4

0
6

0
8

0

Figure 6. Survey results for the question “How helpful do you find un-
locking test cases to be in improving your understanding of the project?”
Answers are based on a scale from 1 (“completely unhelpful”) to 5 (“very
helpful”).

The ratio of conceptual questions versus other questions re-
mained fairly constant between semesters. However, in Fall
2014, the overwhelming majority of the conceptual Piazza
questions were asked by students that were having trouble
unlocking the tests, rather than by students who unlocked the
tests and implemented a function that did not match our spec-
ifications. This trend imples that students who are able to
unlock our tests understand what the problem statement was
asking. In addition, since unlocking a test case is not im-
plementation specific, these questions can be asked to other
classmates and answered by instructors in small groups as
well, without students sharing their code.

Survey Results
In the Spring 2014 offering of the course, we had unlocking
partially implemented for all projects. While many simple
questions were locked, we had not written any conceptual
questions. After the completion of four projects that used
the partially implemented unlocking mechanism, we issued a
student survey to measure the effectiveness of the unlocking
mechanism and to garner suggestions from students. Due to
the partial implementation, these students were able to com-
pare how much unlocking helped.

The results shown in Figure 6 indicate the unlocking
mechanism reinforced students’ conceptual understanding of
project questions. Students were asked to answer the ques-
tion “How helpful do you find unlocking test cases to be in
improving your understanding of the project?” from a scale
of 1 (“completely unhelpful”) to 5 (“very helpful”). Out of
160 responses, 74 (46%) students chose a score of 5 and 53
(33%) students chose a score of 4.

In addition, we were also interested in how students inter-
acted with unlocking when working in groups. Two of our
four projects allowed students to work in pairs, the rationale
being that project partners can provide each other with differ-
ent insights on problem solving. In the context of unlocking,
partners would ideally complete the unlocking procedure to-
gether and address any misunderstandings in the process.

Responses to the question “If you worked with a partner, how
did you and your partner unlock tests?” are shown in Fig-



Both - with collaboration

Both - no collaboration

Only one unlocked

Neither unlocked

No partner

How did you and your partner unlock tests?

0 10 20 30 40 50 60 70

Both my partner and I unlocked tests with each other's help 57 36%

Both my partner and I unlocked tests without each other's help 66 41%

Only one partner in our group unlocked tests 6 4%

Neither of us unlocked tests 0 0%

I did not work with a partner 31 19%

Figure 7. Survey results for the question “If you worked with a partner,
how did you and your partner unlock tests?”

ure 7. Out of 160 responses, only 6 students (4%) reported
that “one partner in our group unlocked tests.” Few students
progressed through the projects without interacting with the
unlocking mechanism. In order to simply gain access to the
test case, the fastest way to do so would be to only have one
partner be responsible for all of the unlocking. Since both
partners went through the unlocking process, this suggests
that a majority of students made a conscious decision to re-
inforce their conceptual understanding of the project prompts
before advancing to program implementation. Of the project
groups where both partners unlocked, 57 students (36%) “un-
locked tests with [their partner’s] help,” while 66 students
(41%) “unlocked tests without [their partner’s] help.”

We also included the option for students to provide free-form
responses. The responses generally verified that unlocking
“helped [students] work through the thought process” and
“[got students] to understand what [they] need to do first.”
We had one project that did not use unlocking at all; one stu-
dent suggested “add[ing] this feature” to that project, as un-
locking aided in “understand[ing] the question...much better,
especially since some of the instructions can be confusing or
unclear.” In addition to supplementing instructor guidance,
the unlocking mechanism can also clarify unexpected ambi-
guities in assignment instructions.

One student noted that “unlock[ing does not] help with imple-
mentation” and instead is better suited for students who are
“totally lost.” While the comment may have been intended as
a complaint, it actually reinforces the distinction between un-
locking for assessing conceptual understanding and applying
test cases for assessing implementation correctness.

CONCLUSION
As class sizes increase, automated feedback becomes increas-
ingly important to both students and instructors. Our work
complements prior efforts to assess solutions by also assess-
ing problem understanding. This additional feedback encour-
ages an effective approach to solving technical problems by
providing feedback early in the problem solving process in
order to make sure that students do not waste their time try-
ing to solve an incorrect interpretation of the given problem.

Our approach has multiple benefits to both students and in-
structors. First of all, instructional effort is reduced while
feedback is given instantaneously and consistently. Students
save time by avoiding incorrect solutions based on misunder-
standings, and instructors avoid helping students debug im-
plementations that are based on misinterpretation.

Through our evaluations, we found this additional form of
automated assessment to have positive effects. The number
of questions instructors were asked decreased, and students
stated that unlocking test cases was helpful. Perhaps most
encouraging of all, the usage patterns we observed suggested
that our students were adopting an effective approach to solv-
ing technical problems.

APPENDIX

The Game of Hog
The game of Hog is our first project and the project that we
used during our evaluation of the unlocking mechanism. The
rules were described to the students as follows:

In Hog, two players alternate turns trying to reach 100 points
first. On each turn, the current player chooses some number
of dice to roll, up to 10. Her turn score is the sum of the dice
outcomes, unless any of the dice come up a 1, in which case
the score for her turn is only 1 point (the Pig out rule).

To spice up the game, we will play with some special rules:

1. Free bacon. If a player chooses to roll zero dice, she scores
one more than the largest digit in her opponent’s score.
For example, if Player 1 has 42 points, Player 0 gains 1
+ max(4, 2) = 5 points by rolling zero dice. If Player 1 has
48 points, Player 0 gains 1 + max(4, 8) = 9 points.

2. Hog wild. If the sum of both players’ total scores is a
multiple of seven (e.g., 14, 21, 35), then the current player
rolls four-sided dice instead of the usual six-sided dice.

3. Swine swap. If at the end of a turn one of the player’s total
score is exactly double the other’s, then the players swap
total scores. Example 1: Player 0 has 20 points and Player
1 has 5; it is Player 1’s turn. She scores 5 more, bringing
her total to 10. The players swap scores: Player 0 now has
10 points and Player 1 has 20. It is now Player 0’s turn.
Example 2: Player 0 has 90 points and Player 1 has 50; it
is Player 0’s turn. She scores 10 more, bringing her total to
100. The players swap scores, and Player 1 wins the game
100 to 50.

The project prompt and rules are the same for the two
semesters that we are comparing.



Roll Dice Function
The roll dice function is a problem about simulating si-
multaneous dice rolls. The exact prompt that we gave them is
as follows:

Implement the roll dice function in hog.py, which returns
the number of points scored by rolling a fixed positive num-
ber of dice: either the sum of the dice or 1. To obtain a single
outcome of a dice roll, call dice(). You should call this func-
tion exactly num rolls times in your implementation. The
only rule you need to consider for this problem is Pig out.

In Fall 2014, since we had the unlocking mechanism, we
added a few questions in order to aid understanding of our
testing suite. Specifically, the test scenarios that we checked
in Fall 2013 were the following:

>>> counted_dice = make_test_dice(4, 1, 2)
>>> roll_dice(2, make_test_dice(4, 6, 1))
10
>>> roll_dice(3, make_test_dice(4, 6, 1))
1
>>> roll_dice(3, make_test_dice(1, 2, 3))
1
>>> roll_dice(3, counted_dice)
1
>>> roll_dice(1, counted_dice)
4
>>> test_dice = make_test_dice(4,2,3,3,4,1)
>>> roll_dice(5, test_dice)
16
>>> roll_dice(2, make_test_dice(1))
1

In addition, in Fall 2014, we added some more scenarios in
order to help students understand the Fall 2013 tests that were
only used for unlocking purposes:

>>> test_dice = make_test_dice(4, 1, 2)
>>> test_dice()
4
>>> test_dice() # Second call
1
>>> test_dice() # Third call
2
>>> test_dice() # Fourth call
4

Swap Strategy Function
The swap strategy function asks students to implement
a strategy that takes advantage of the Swine swap rule. The
exact prompt that we gave them is as follows:

A strategy can also take advantage of the Swine swap rule.
Implement swap strategy, which

1. Rolls 0 if it would cause a beneficial swap that gains points.

2. Rolls BASELINE NUM ROLLS if rolling 0 would cause a
harmful swap that loses points.

3. If rolling 0 would not cause a swap, then do so if
it would give at least BACON MARGIN points and roll
BASELINE NUM ROLLS otherwise.

In Fall 2013, we had the following scenarios:

>>> swap_strategy(23, 60)
0
>>> swap_strategy(27, 17)
5
>>> swap_strategy(50, 80)
0
>>> swap_strategy(12, 12)
5
>>> swap_strategy(12, 34)
0
>>> swap_strategy(8, 9)
4
>>> swap_strategy(32, 43)
0
>>> swap_strategy(20, 32)
4

In Fall 2014, we had the following scenarios:

>>> swap_strategy(23, 60)
0
>>> swap_strategy(27, 17)
5
>>> swap_strategy(50, 80)
0
>>> swap_strategy(12, 12)
5
>>> swap_strategy(15, 34, 5, 4)
0
>>> swap_strategy(8, 9, 5, 4)
4
>>> swap_strategy(32, 40, 5, 4)
0
>>> swap_strategy(20, 32, 5, 4)
4

For all of the above tests, students had to unlock them in order
to clarify their understanding.

ACKNOWLEDGMENTS
This work was supported by a Google Research Cloud Cred-
its Award.

REFERENCES
1. Brooks, M., Basu, S., Jacobs, C., and Vanderwende, L.

Divide and correct: Using clusters to grade short
answers at scale. In Proceedings of the First ACM
Conference on Learning @ Scale Conference, L@S ’14,
ACM (New York, NY, USA, 2014), 89–98.

2. Earl, L. M. Assessment As Learning: Using Classroom
Assessment to Maximize Student Learning. Corwin,
2003.

3. Felleisen, M., Findler, R. B., Flatt, M., and
Krishnamurthi, S. How to Design Programs: An
Introduction to Programming and Computing. MIT
Press, Cambridge, MA, USA, 2001.

4. H. Krawczyk, M. Bellare, R. C. HMAC: Keyed-Hashing
for Message Authentication. RFC 2104.



5. Heywood, J. Assessment in higher education: Student
learning, teaching, programmes and institutions. 2000.

6. Hollingsworth, J. Automatic graders for programming
classes. Commun. ACM 3, 10 (Oct. 1960), 528–529.

7. Ihantola, P., Ahoniemi, T., Karavirta, V., and Seppälä, O.
Review of recent systems for automatic assessment of
programming assignments. In Proceedings of the 10th
Koli Calling International Conference on Computing
Education Research, Koli Calling ’10, ACM (New York,
NY, USA, 2010), 86–93.

8. Karpicke, J. D., and Roediger, H. L. The critical
importance of retrieval for learning. Science 319, 5865
(2008), 966–968.

9. Kulkarni, C. E., Socher, R., Bernstein, M. S., and
Klemmer, S. R. Scaling short-answer grading by
combining peer assessment with algorithmic scoring. In
Proceedings of the First ACM Conference on Learning
@ Scale Conference, L@S ’14, ACM (New York, NY,
USA, 2014), 99–108.

10. O’Rourke, E., Ballweber, C., and Popoviı́, Z. Hint
systems may negatively impact performance in
educational games. In Proceedings of the First ACM
Conference on Learning @ Scale Conference, L@S ’14,
ACM (New York, NY, USA, 2014), 51–60.

11. Parlante, N., Zelenski, J., Dodds, Z., Vonnegut, W.,
Malan, D. J., Murtagh, T. P., Neller, T. W., Sherriff, M.,
and Zingaro, D. Nifty assignments. In Proceedings of
the 41st ACM Technical Symposium on Computer
Science Education, SIGCSE ’10, ACM (New York, NY,
USA, 2010), 478–479.

12. Sui Fai John Mak, Roy Williams, J. M. Blogs and
forums as communication and learning tools in a
MOOC. In Proceedings of the Seventh International
Conference on Networked Learning 2010 (2010),
275–284.

13. Thorpe, M. Assessment and third generation distance
education. Distance Education 19, 2 (1998), 265–286.


	Introduction
	Related Work
	Solving Technical Problems
	Step 1: Problem Understanding
	Step 2: Planning
	Step 3: Implementation

	Example Problems
	System Design
	Interface for Students
	Interface for Instructors
	Unlocking Mechanism

	Evaluation
	Usage Pattern
	Class Forum
	Survey Results

	Conclusion
	The Game of Hog
	Roll Dice Function
	Swap Strategy Function

	REFERENCES 

