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Abstract

We consider the motion-planning problem of planning a
collision-free path of a robot in the presence of risk zones.
The robot is allowed to travel in these zones but is penalized
in a super-linear fashion for consecutive accumulative time
spent there. We suggest a natural cost function that balances
path length and risk-exposure time. Specifically, we consider
the discrete setting where we are given a graph, or a roadmap,
and we wish to compute the minimal-cost path under this cost
function. Interestingly, paths defined using our cost func-
tion do not have an optimal substructure. Namely, subpaths
of an optimal path are not necessarily optimal. Thus, the
Bellman condition is not satisfied and standard graph-search
algorithms such as Dijkstra cannot be used. We present a
path-finding algorithm, which can be seen as a natural gen-
eralization of Dijkstra’s algorithm. Our algorithm runs in
O ((nB · n) log(nB · n) + nB ·m) time, where n and m are
the number of vertices and edges of the graph, respectively,
and nB is the number of intersections between edges and the
boundary of the risk zone. We present simulations on robotic
platforms demonstrating both the natural paths produced by
our cost function and the computational efficiency of our al-
gorithm.

Introduction
In this paper, we explore motion-planning problems where
an agent has to compute the least-cost path to navigate
through risk zones while avoiding obstacles. Travelling
these regions incurs a penalty which is super-linear in the
traversal time. We call the class of problems Risk Aware
Motion Planning (RAMP) and define a natural cost function
which simultaneously optimizes for paths that are both short
and reduce consecutive exposure time in the risk zone.

We are motivated by real-world problems involving risk,
where continuous exposure is much worse than intermittent
exposure. Examples include pursuit-evasion where sneaking
in and out of cover is the preferred strategy, and visibility
planning where the agent must ensure that an observer or
operator is minimally occluded.
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Figure 1: Example for which optimal paths computed using
our cost function (Eq. 1) do not have an optimal substruc-
ture. Distance between two consecutive grid points is 0.5.
The minimal-cost path from xs to y passes through x1 and
has a cost of 0.5 + (e1.5 − 1) ≈ 3.98 while the path passing
through x2 has a cost of 3 + (e1 − 1) ≈ 4.78. In contrast,
the minimal-cost path to z does path through x2 and has a
cost of 3+(e1.5− 1) ≈ 6.48 while the path passing through
x1 has a cost of 0.5 + (e2 − 1) ≈ 6.88.

Interestingly this setting (where continuous exposure is
much worse than intermittent exposure) is not limited to
planning: consider a large number of processes running in a
shared-memory environment. Here, we would like to quan-
tify the cost of running each process. When a process writes
to the shared memory, it is required to use a mutex mech-
anism, possibly blocking other processes. Clearly, as the
blocking-time increases, the probability that other processes
have to stay idle, increases. Thus, as in the previous exam-
ples, the cost of running the process is its duration with a
super-linear penalty proportional to accumulative consecu-
tive times where the process writes to the shared memory.

Although practically useful, our cost function for RAMP
suffers from one fundamental algorithmic challenge: opti-
mal plans do not posses optimal substructure.

We explain with an example and an analogy. Consider
Fig. 1, where an agent, traversing a graph, starts at xs and
must reach z while avoiding Xobs. The cost of traversing
through Xsafe is linear in the distance travelled while the cost
of traversing Xrisk is super-linear in the distance travelled
(formalized in Sec. ).

Now consider two snails (an homage to Pohl (Pohl 1969))
taking two different paths racing to z: snail A passes
through x1 and y, and snail B through x2 and y. If there
were no risk zones, and the snails move at constant speed,
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the optimal substructure implies that when B reaches y and
notices that A has passed through it already (snails leave
personalized slime trails) it has no hope of catching up and
should give up. In other words, the first snail that reaches
z is also the first snail that reaches every intermediate point
along the optimal path to z. Optimal substructure is critical
for search algorithms (Dijkstra 1959) to efficiently track all
“promising” snails (Sec. ).

Unfortunately, our cost function for RAMP does not
posses optimal substructure. Imagine that snails passing
through a risk region accumulate muck on their foot. The
more time a snail spends in a risk region, the more muck
it accumulates, and the slower it gets. Now, although B
reaches y later than A, it has less muck on it, having spent
less time in the risk zone than A, and actually catches up
and overtakes A to reach z first.

We define a boundary point to be at the boundary of a risk-
free and a risk region (like x1 and x2 in our example) and
let nB denote the number of boundary points in our graph.

We can now address RAMP via two key insights:

1. Any optimal path from a risk-free start to a risk-free goal
that passes through a risk region can be decomposed into
(i) optimally reaching a boundary point, (ii) optimally
traversing the risk region, and (iii) optimally reaching the
goal from the exit (of the risk region). As a consequence,
if we store O(n2

B) pairwise optimal paths (one for each
pair of boundary points), we could create an augmented
graph which can be used to directly solve RAMP.

2. All snails that pass through one specific boundary point
satisfy the optimal substructure condition. In other words,
the only way a snail can overtake another is if it enters the
risk region via a different boundary point. As a conse-
quence, we only need to track O(nB) extra snails.

Fuelled by these insights, we propose two new fundamen-
tally different algorithms (Sec. ) that solve RAMP efficiently
by augmenting different data structures used by Dijkstra’s
algorithm:

Our precomputation-based algorithm creates an aug-
mented graph with boundary vertices and their precom-
puted optimal paths added to the original graph, incurring
a time complexity of O

(
nBn · log n+ n2

B · log n+ nBm
)
.

Here n and m are the number of vertices and edges on the
graph, respectively.

Our incremental algorithm is a strict generalization of
Dijkstra’s algorithm to account for risk regions. It main-
tains an augmented priority queue to account for the
O(nB) boundary points, incurring a time complexity of
O (nBn · log n+ nBm).

Interestingly the (asymptotic) running time of both al-
gorithms is identical unless the n2

B log n component of the
precomputation dominates the running time. This happens
when nB log n = ω(m). Intuitively, the precomputation al-
gorithm slows down if there are many boundary vertices,
whereas the incremental algorithm slows down if there are
many risk-zone edges.

We evaluate our algorithms in Sec. . Our experi-
ments show that our cost function naturally balances path

length and risk-exposure times. Furthermore we demon-
strate the advantage of our incremental algorithm over the
precomputation-based approach. Finally, we discuss future
work in Sec. .

Related work
The RAMP problem lies on the intersection between sev-
eral disciplines which we will briefly review. In its general
form, our problem can be seen as an instance of the motion-
planning problem (LaValle 2006; Choset et al. 2005). In-
deed, in this work we follow the sampling-based paradigm
(Sec. ). This calls for computing a discrete graph which is
then traversed by a path-finding algorithm (Sec. ).

Computing minimal-risk paths in high-dimensional
spaces is related to motion-planning under risk constraints
(Sec. ). When the search domain is two dimensional, alter-
native, more efficient approaches exist (Sec. ).

Sampling-based motion planning
The basic motion-planning problem calls for moving a
robot R in a workspace cluttered with static obstacles from
a start position to a target one while avoiding obstacles and
minimizing some cost function. Typically, R is abstracted as
a point in a configuration space X which is subdivided into
free and forbidden regions (Lozano-Pérez 1983). The prob-
lem then reduces to computing a minimal-cost collision-free
path for a point in X .

For high-dimensional problems, even computing a
path, let alone an optimal one, becomes computationally
hard (Reif 1979). Thus, a common approach is to approxi-
mate X using a graph, or a roadmap, G. One such example
is the Probabilistic Roadmap Planner or PRM (Kavraki et al.
1996). Here vertices of G are points sampled in X and two
“close-by” vertices are connected by an edge if the straight
line connecting the two does not intersect obstacles in X . A
query is then answered by running a shortest-path algorithm
on G. Under certain assumptions, the cost of solutions ob-
tained by this algorithm converge to the cost of the optimal
solution as the number of samples grow (Karaman and Fraz-
zoli 2011; Solovey, Salzman, and Halperin 2016).

Path planning
Planning a shortest path on a given graph is a well studied
problem. Given a graph with a cost function on its edges, the
shortest-path problem asks for finding a path of minimum
cost between two given vertices. When the cost function has
an optimal substructure, efficient algorithms such as Dijk-
stra (Dijkstra 1959), A* (Hart, Nilsson, and Raphael 1968)
and their many variants can be used.

In certain applications, including our setting, this is not
the case. For example in (Tsaggouris and Zaroliagis 2004)
every edge is associated with two attributes, say cost and
resource, and there is a non-linear objective function which
is convex and non-decreasing

Our problem is also closely related to multi-objective path
planning. Here, we are given a set of cost functions and we
are interested in finding a set of paths that captures the trade-
off (the so-called Pareto curve) among the several objectives.
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In general, the number of efficient solutions may be expo-
nential in the problem size (Ehrgott and Gandibleux 2000).
However, a fully polynomial-time approximation scheme
(FPTAS) can be found, even for the case where the cost
functions are non additive (Tsaggouris and Zaroliagis 2006).
For recent results on multi-objective and multi-constrained
non-additive shortest path problems, see e.g. (Reinhardt and
Pisinger 2011) and references within.

Planning under risk constraints
Planning under risk constraints has been studied in several
motion-planning settings. A common approach to formulate
this problem is to assign some risk values to regions. Paths
are considered by the planning algorithm only if the risk ob-
tained in different regions are below some predefined thresh-
olds (Ono, Williams, and Blackmore 2013; Ono et al. 2015;
Chow et al. 2015).

Planning under risk constraints was also considered for
the specific problem of Autonomous Underwater Vehicle
(AUV). Here the cost function used was the sum of risk
values at waypoints along a given path and the domain was
two-dimensional (Pereira et al. 2013).

Planning under risk constraints is closely related to the
problem of planning under uncertainty. A common ap-
proach is to minimize the estimated collision probability of
a path (Liu and Ang 2014; Sun et al. 2016). Additional con-
straints are often added such as requiring some notion of
smoothness (Müller and Sukhatme 2014).

Planning in low dimensions
When planning occurs in low dimensions, efficient algo-
rithms exist (see, e.g., (Halperin, Salzman, and Sharir 2016)
for a survey). We briefly mention several variants which are
related to the problem we consider.

One such example is computing minimal-cost paths for
weighted planar regions (Mitchell and Papadimitriou 1991).
Here, a planar space is subdivided into different regions,
where each region is assigned a positive weight. The
length of a path is defined as the weighted sum of (Eu-
clidean) lengths of the subpaths within each region. The
problem is conjectured to be computationally hard, thus
the focus of the community has been on approximate al-
gorithms. For an overview of recent results, as well as
a generalization of the problem, see (Sun and Reif 2007;
Jaklin, Tibboel, and Geraerts 2014).

Another example is computing paths which are simul-
taneously short and stay away from the obstacles (Wein,
van den Berg, and Halperin 2008). It is not clear if this
problem is NP-Hard, however an FPTAS for this problem
is known (Agarwal, Fox, and Salzman 2016).

Problem formulation
Let X denote the d-dimensional configuration space, Xfree

the collision-free portion of X and Xobs = X \ Xfree. Let
Xrisk ⊂ Xfree and Xsafe = Xfree \ Xrisk denote the risk and
risk-free zones, respectively. We assume that Xrisk and Xfree

are open and closed sets, respectively. See Fig. 2(a).

A trajectory γ : [0, Tγ ] → Xfree is a continuous mapping
between time and configurations. The image of a trajectory
is called a path. By a slight abuse of notation we refer to
γ[t′, t′′] as the sub-path connecting γ(t′) and γ(t′′) for 0 ≤
t′ ≤ t′′ ≤ Tγ . Finally, we assume that both endpoints of the
path lie in the risk-free zone. Namely, γ(0), γ(Tγ) ∈ Xsafe.

Given a trajectory γ, and some time t ∈ [0, Tγ ], let t′ ≤ t
be the latest time such that γ(t′) ∈ Xsafe. Notice that if
γ(t) ∈ Xsafe then t′ = t. We define the current exposure
time of γ at t as λγ(t) = t − t′. Namely, if γ(t) ∈ Xrisk

then λγ(t) is the time passed since γ last entered Xrisk. If
γ(t) ∈ Xsafe then λγ(t) = 0.

We are now ready to define our cost function. Let γ be
a trajectory and f(x) any function such that f(x) = ω(x)
and f(0) = 1. The cost of γ, denoted by cf (γ) is defined as

cf (γ) =

∫
t∈[0,Tγ ]

f(λγ(t))| ˙γ(t)|dt. (1)

Eq. 1 penalizes continuous exposure to risk in a super-
linear fashion (hence the requirement that f(x) = ω(x)).
As f(0) = 1, the cost of traversing the risk-free zone is sim-
ply path length. See Fig. 3 for a conceptual visualization of
the current exposure time and our cost function.

Equipped with our cost function we can formally state the
risk-aware motion-planning problem:

P1 Risk-aware motion-planning problem (RAMP) Given the
tuple (Xsafe,Xrisk,Xobs, xs, xg, f), where xs, xg ∈ Xsafe

are start and target configurations, compute argmin
γ∈Γ

cf (γ)

with Γ the set of all collision-free trajectories connecting xs
and xg

As mentioned, RAMP is a generalization of the motion-
planning problem (where there are no risk zones) which is
known to be PSPACE-Hard (Reif 1979). Thus, in this paper
we concentrate on the discrete version of the problem:

P2 discrete Risk-aware motion-planning problem (dRAMP)
Given the tuple (Xsafe,Xrisk,Xobs, xs, xg, G, f), where G =
(V,E) is a roadmap embedded in the C-space such that
xs, xg ∈ V , compute argmin

γ∈ΓG

cf (γ) with ΓG the set of

all collision-free paths1 in G connecting xs and xg. See
Fig. 2(b).

To simplify the discussion, in the rest of this paper we
assume that the robot is moving in constant speed and we
use f(x) = ex. Thus, we can re-write Eq. 1 as

c(γ) =

∫
t∈[0,Tγ ]

eλγ(t)dt. (2)

Using the assumption that the robot is moving in constant
speed, we will use the terms duration of a trajectory and path
length interchangeably (here we measure path length as the
Euclidean distance). Further exploiting this assumption and
by a slight abuse of notation we will also use Eq. 2 to define
the cost of a path (and not of a trajectory).

1Note that we use paths to define curves in X and as sequence
of edges in a graph. These definitions coincide as the graph is
embedded in X .
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Figure 2: (a) A two-dimensional space X consisting of obstacles (red polygons) and a risk region (purple region), defined
as all points which are farther away from the obstacles than a predefined distance (see Sec. for a motivation regarding this
scenario). (b) Probabilistic roadmap G sampled in X . (c) The roadmap G′ built by taking G, adding all border points (hollow
squares) as vertices and replacing all existing edges in Xrisk with an edge between every pair of border points (red polylines)
representing the cost of travelling between the two in G ∩ Xrisk. (d) Minimal-cost path (green and blue for edges in Xsafe and
Xrisk, respectively). Notice that this is not the shortest path, which has high exposure to Xrisk (depicted in dashed green and
dashed blue).
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Figure 3: Relation between a trajectory γ(t) (top), recent
exposure time λγ(t) (middle) and cost cf (γ(t)) (bottom)
as a function of time. In t ∈ [0, t1], γ stays in Xsafe,
hence λγ(t) = 0 and the cost grows linearly with time.
At t = t1, γ enters Xrisk, λγ(t) grows linearly and the cost
grows super-linearly. At t = t2, γ leaves Xrisk, λγ(t) = 0
and the cost returns to growing linearly.

Preliminaries
In this section we review Dijkstra’s path-finding algorithm
(using a min-priority queue) which relies on the cost func-
tion to have an optimal substructure. We then continue to
discuss our cost function—why it does not have an optimal
substructure and what properties it does have.

Dijkstra’s shortest-path algorithm
Dijkstra’s algorithm computes the minimal-cost path be-
tween a given start vertex xs and all other vertices in a graph.
Returning to our snails, the algorithm can be intuitively de-
scribed as follows: a snail starts at xs moving at constant
speed. Every time it reaches a vertex, it splits into multiple
snails, one for each outgoing edge. If a snail reaches a vertex
which was already reached by another snail (identified by

the existing trail of slime), it retracts into its shell and stops
moving. Clearly, the distance travelled by the first snail to
reach any vertex u is the minimal distance to reach u.

The problem with the aforementioned process is that it is
continuous. Dijkstra’s algorithm uses discrete times where
each time-step represents the event that a snail reaches a spe-
cific vertex. The key difference is that here only one snail
moves at a time and his movement spans the entire length
of an edge. Processing an event is similar to the continu-
ous version: if a snail reaches a vertex which was already
reached by another snail, it retracts into it’s shell and stops
its progress. Otherwise, it splits into multiple snails, one
for each outgoing edge, and the time the snail is intended to
reach the edge’s endpoint is computed. This is registered as
a new event.

The implementation of the aforementioned process is via
a min-cost priority queue Q. Each entry τ = (u, c, p) in
the queue represents the time, or cost, c that a snail is to
reach the vertex u through the parent p. We emphasize that
for each vertex u, only the current best path (or snail) is
maintained, together with its cost. Initially, this value is only
known for xs. For every other vertex this value is unknown,
thus the event is initialized to have infinite cost. After all
such events are inserted into the queue, the minimal cost
entry (u, c, p) is removed and if it is the goal, the process
terminates. If not, then for every neighboring edge (u, v)
that is collision free, the cost to reach v via u is computed. If
it represents a shorter path to reach v, than v’s current entry,
v’s entry together with its location in the priority queue are
updated.

Properties of our cost function
Recall that our cost does not have an optimal substructure
(see Sec. and Fig. 1). This implies that, for any vertex u,
we need to consider not only the optimal path to reach u,
but also all paths that pass through u and may be part of a
minimal-cost path to reach some future vertex v (that pass
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through u). To do so, we must characterize this set of paths.
We start by noting the following properties of Eq. 2:

Observation 1 Let γ be a trajectory that lies completely
within Xsafe, then ∀t λγ(t) = 0 and the cost of the trajectory
is simply its duration Tγ .

Observation 2 Let γ be a trajectory that lies completely
within Xrisk, then ∀t λγ(t) = t and the cost of the trajec-
tory is eTγ − 1.

Using the fact that Obs. 1 and 2 hold for any maximally
connected subpath in Xsafe or Xrisk we can rewrite Eq. 2.
Namely, let t0 = 0 < t1 < . . . < tn = Tγ such that ∀i ≥ 0,
γ[t2i, t2i+1] ⊂ Xsafe and γ[t2i+1, t2i+2] ⊂ Xrisk then2

c(γ) =
∑
i

(t2i+1 − t2i) +
∑
i

(
et2i+2−t2i+1 − 1

)
. (3)

We characterize the set of paths that our algorithm will
have to consider using the notion of domination. Given
two trajectories γ1, γ2 that start at xs and end in some ver-
tex u, we say that γ1 dominates γ2 if it will always be more
beneficial to use γ1 and not γ2 to reach some future ver-
tex v. Namely, γ1 dominates γ2 if c(γ1) ≤ c(γ2) and
λγ1(Tγ1) ≤ λγ2(Tγ2). The set of all trajectories Γu that
start at xs and end in u where no trajectory dominates any
other trajectory is said to be a useful set of trajectories.

Understanding path domination and the maximal size of
a useful set of trajectories will be key in understanding our
algorithms and bounding their running time. We note several
properties of such trajectories:

Lemma 1 Let u ∈ Xsafe with γu the minimal-cost path to
reach u from xs. Then γu dominates any other trajectory γ′

u
that reaches u.

Proof: Since u ∈ Xsafe we have that λγu(Tγu) =
λγ′

u
(Tγ′

u
) = 0. Furthermore, γu is a minimal-cost path, thus

c(γu) ≤ c(γ′
u). Hence, by definition, γu dominates γ′

u. �

Lemma 2 Let u ∈ Xrisk with γu the minimal-cost path to
reach u from xs. Let φ(u) be the point on the boundary
of Xsafe through which γu last entered Xrisk. Then, γu dom-
inates any trajectory γ′

u that reaches u with φ(u) as the last
point on the boundary of Xsafe through which γ′

u last en-
tered Xrisk.

Proof: Let t1 and t′1 be the times that γu and γ′
u

reach φ(u), respectively. If c(γu[0, t1]) > c(γ′
u[0, t

′
1]), by

Eq. 3, we can replace subpath γu[0, t1] with γ′
u[0, t

′
1] in γu

and reduce its cost which contradicts γu being a minimal-
cost path. The same argument holds for subpaths γu[t1, Tγu

]
and γ′

u[t
′
1, Tγ′

u
]. Thus, we have that λγu

(Tγu
) ≤ λγ′

u
(Tγ′

u
)

and γu dominates γ′
u. �

2There is a slight inaccuracy here as Xrisk is an open set and
thus γ[t2i+1, t2i+2] cannot be fully contained in Xrisk. However
this inaccuracy does not change our results and is intentionally used
for ease of exposition.

Minimal-cost path-finding algorithm
In this section we address problem P2, namely how to effi-
ciently compute a minimal-cost path between two vertices in
a given roadmap. As we have seen, in Dijkstra’s algorithms
(and its many variants), each vertex u can have only one
useful path which will dominate all other paths to reach u.
Lemma 1 and 2 imply that in our setting this holds for ver-
tices in Xsafe but for vertices in Xrisk, the number of useful
paths may be as large as the number of edges entering Xrisk.
This gives rise to two different algorithmic approaches:

The first approach (Sec. ) is to directly use Eq. 3 by split-
ting the graph into subgraphs that are fully contained in Xsafe

and subgraphs that are fully contained in Xrisk. We then pre-
compute the graph distance between all points that lie on the
border of Xsafe and Xrisk (we call these border points) re-
stricted to moving only in Xrisk. Using these distances al-
lows us to define a new graph, which has an edge between
every pair of border points with weights assigned using the
precomputed distances. We can then run any shortest-path
algorithm on the new graph without having to consider the
multiple useful paths of vertices in Xrisk. This is analogous
to having our snails roam the original graph and considering
a traversal of Xrisk as one discrete event.

The first algorithm (Sec. ), which requires preprocessing
the entire graph, can be seen as a warm-up for our efficient
path-finding algorithm (Sec. ). This algorithm essentially
runs a Dijkstra-type search without any preprocessing. To
do so, for vertices within Xrisk, it efficiently maintains all
useful paths. Here we can envision our snails entering Xrisk

as in Dijkstra’s algorithm. However, when one snail reaches
a vertex already traversed by another snail, it only retracts
into its shell if the other snail dominates it.

Both algorithms have to distinguish between Xsafe

and Xrisk. Thus, we start by defining the refined roadmap
(Sec. ) and then continue to detail each algorithm.

Refined roadmap
An edge e is said to be a border edge if it straddles Xsafe

and Xrisk. Namely, if e ∩ Xsafe 
= ∅ and e ∩ Xrisk 
= ∅.
For simplicity of exposition, we assume that every border
edge of G intersects the boundary of Xrisk exactly once.
We denote this point φ(e) and call it a border point. Set
Eborder ⊆ E to be the set of all border edges and Vborder =⋃

e∈Eborder
φ(e) to be all the border points.

Given a roadmap G = (V,E), define the refined roadmap
G̃ = (Ṽ , Ẽ) such that Ṽ = V ∪ Vborder and Ẽ = (E \
Eborder)

⋃
{(u, φ(e)), (φ(e), v) | (u, v) ∈ Eborder}. Namely,

the refined roadmap is the roadmap defined by adding all
border points to the original set of vertices and subdividing
border edges accordingly.

Minimal-cost planning via precomputinon
To compute the shortest path in G, we start by construct-
ing G̃. For each border point, we run Dijkstra’s algo-
rithm restricted to Xrisk. This gives us a mapping T :
Vborder × Vborder → R≥0 that denotes shortest distances, or
traversal times, of paths that stay strictly in Xrisk (if no such
path exists, then the mapping returns ∞). Thus, the cost of
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the shortest path between two border points u, v that stays
strictly in Xrisk is eT (u,v) − 1. Now, construct the graph
G′ = (V ′, E′) where V ′ = (V ∩ Xsafe)

⋃
Vborder, and E′ =

(E∩Xsafe)
⋃
{(u, φ(e)) | (u, v) ∈ Eborder}

⋃
{(u, v) | u, v ∈

Vborder and T (u, v) < ∞}. Namely, V ′ consists of all ver-
tices that are risk free or are border points. E′ contains
three types of edges: (i) all original edges that are risk free,
(ii) edges from G̃ that start at a risk-free vertex and end
at a border point, and (iii) new edges connecting each pair
of border points within the same risk zone. The weights of
edges in G′ are simply the weights of the edges in G̃ if they
are of the first two types or eT (u,v) − 1 if the edge (u, v) is
of the third type. See Fig. 2(c). Finally, we run any shortest-
path algorithm between xs and xt in G′.

This algorithm requires preprocessing the entire graph
and computing distances between all pairs of border points.
As we will see, this may incur unnecessary computations.
We continue with a Dijkstra-type algorithm that computes
paths in a just-in-time manner.

Minimal-cost planning via incremental search
Recall that Dijkstra’s algorithm makes use of a priority
queue Q with entries of the form (u, c, p). Our algorithm
will also store entries in Q which we call Risk-Aware Short-
est Paths entries, or RASP entries. Each such RASP en-
try represents a dominating path. Following Lemma 1, for
each vertex u ∈ Xsafe we need one such entry. Following
Lemma 2, for each vertex u ∈ Xrisk we need at most one
entry for each border point of u’s risk region.

Specifically, each entry τ = (u, c, t, λ, p, φ) will represent
a dominating path, or trajectory γτ , to reach a vertex u[τ ] =
u (implicitly defined by the parent pointer p[τ ] = p), its cost
and duration (stored as c[τ ] = c and t[τ ] = t, respectively),
its current exposure time at time t[τ ] (stored as λ[τ ] = λ)
and the last border point (φ[τ ] = φ) that γτ passed through
if u ∈ Xrisk (NIL if u ∈ Xsafe).

The algorithm (Alg. 1) starts by initializing RASP entries
(lines 1-4) and inserting them into the min-priority queue Q
(lines 5-6). Entries in Q are ordered according to their cost.
We iteratively pop the min-cost entry τ from Q and set
u = u[τ ] to be the vertex associated with the entry (line 8).
If it is the goal vertex, then a minimal-cost path has been
found and the algorithm terminates (lines 9-10). If not, we
consider each of its neighbors v, and if the edge connect-
ing the two is collision free we expand the trajectory γτ to v
(line 12). This trajectory γτtmp is represented by a temporary
RASP entry τtmp. As in Dijkstra’s algorithm, we check if it
improves the current-best path to reach v. Here we restrict
ourselves to paths that enter Xrisk through a specific border
point φ[τtmp]. If this is the case (line 13-15), we update the
relevant RASP entry and decrease it’s cost in Q (lines 14-15)

We now detail the expand operation (line 12). Specif-
ically, let τ be the entry popped from Q with u = τ [u] its
associated vertex. Let v be its neighbor and let Δt(e) denote
the length of an edge e. We describe the content of the new
RASP entry τv according to whether u and v are in Xsafe

or Xrisk. See extended version of this paper (Salzman, Hou,
and Srinivasa 2017) for a visualization of how the RASP

Algorithm 1 incremental search (G, xs, xg)
1: τxs,NIL = (xs, 0, 0, 0,NIL,NIL); T ← {τxs,NIL}
2: for all v ∈ V \ {xs} do
3: for all φ ∈ Vborder do
4: τv,φ = (v,∞,∞,∞,NIL, φ); T ← T ∪ {τv,φ}
5: for all τ ∈ T do
6: Q.add with priority(τ)

7: while |Q| > 0 do
8: τ ← Q.extract min(); u ← u[τ ]
9: if u = xg then

10: return extract path(τ)

11: for all v s.t. (u, v) ∈ E and (u, v) /∈ Xobs do
12: τtmp ← expand(τ, v); τv ← τv,φ[τtmp]

13: if c(τtmp) < c[τv] then
14: τv ← τtmp
15: Q.decrease priority(τv)

lists are maintained by the algorithm.
Case (i) u ∈ Xsafe and v ∈ Xsafe: We set τv = (u, c[τ ]+

Δt(u, v), t[τ ] + Δt(u, v), 0,NIL,NIL).
Case (ii) u ∈ Xsafe and v ∈ Xrisk: We compute the

border point φ = φ(u, v) and the lengths Δt(u, φ) and
Δt(φ, v). We then compute the RASP entry which repre-
sents the path reaching v using u as its parent. This en-
try τv will have, c[τv] = c[τ ] + Δt(u, φ) + eΔt(φ,v) − 1,
t[τv] = t[τ ] + Δt(u, v), λ[τv] = Δt(φ, v) and φ[τv] = φ.

Case (iii) u ∈ Xrisk and v ∈ Xrisk: We set c[τv] =
c[τ ]+ eλ[τ ] · (eΔt(u,v)−1), t[τv] = t[τ ]+Δt(u, v), λ[τv] =
λ[τ ] + Δt(u, v) and φ[τv] = φ[τ ].

Case (iv) u ∈ Xrisk and v ∈ Xsafe: We compute
the border point φ(u, v) and the lengths Δt(u, φ(u, v)) and
Δt(φ(u, v), v). Similar to case (ii) we set c[τv] = c[τ ] +
eλ[τ ] · (eΔt(u,φ(u,v)) − 1) + Δt(φ(u, v), v), t[τv] = t[τ ] +
Δt(u, v), λ[τv] = 0 and φ[τv] = NIL.

Practical implementation Similar to our descriptions of
Dijkstras algorithm (Sec. ), we traded practical efficiency
with ease of exposition (this has no effect on the asymptotic
runtime of the algorithm). In practice, we can initialize Q
to contain only the RASP entry associated with xs. Other
RASP entries can be created on the fly only when they are
first constructed by the expand operation (lines 12-15).

Additionally, Lemma 2 states that a given vertex can have
at most nB useful trajectories. In practice, this number may
be much smaller. Thus, before inserting a RASP entry τ
to Q, we can check if it is dominated by any other entry τ ′

in Q with u[τ ] = u[τ ′].
Finally, the same algorithm can be transformed into an

A*-type algorithm by using a heuristic that estimates the
cost-to-go and ordering Q according to the sum of the cost-
to-come and the estimated cost-to-go.

Computational complexity
In this section we discuss the computational complexity of
our search algorithms. We assume that testing if an edge
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is collision free and computing border points and distances
take constant time. We note that while this assumption
is common in search algorithms such as Dijkstra and A*,
in many motion-planning applications, these operations of-
ten dominate the (practical) running time of search algo-
rithms (LaValle 2006).

Recall that nB ≤ m is the number of border points in G
and that our algorithm that uses precomputation (Sec. ), runs
(i) Dijkstra’s algorithm from every border point (restricted
to vertices within within Xrisk) (ii) adds an edge between
every two border points in the same connected component
and (iii) runs a shortest-path algorithm on the new graph G′.
Step (i) takes O (nB · ((n+ nB) log(n+ nB) +m)) time.
We then add O(n2

B) edges to our new graph in step (ii). This
implies that the number of vertices n′ and edges m′ of G′ is
n′ = O(n + nB) and m′ = O(m + n2

B). Thus, step (iii)
takes O(n′ log n′+m′). To summarize, our precomputation-
based algorithm takes

O
(
nBn · log n+ n2

B · log n+ nBm
)
.

Our incremental search algorithm (Sec. ) has complex-
ity identical to Dijkstra’s except that there may be at
most n · nB RASP entries in Q (and not n). More-
over, each outgoing edge of a vertex u can be expanded
once for each of u’s useful paths which is at most O(nB).
Thus, our incremental search algorithm runs in time,
O ((n · nB) log(n · nB) + nB ·m) which is equal to

O (nBn · log n+ nBm) .

Interestingly, the (asymptotic) running time of the two al-
gorithms is identical unless the n2

B log n component domi-
nates the running time of the first algorithm. This happens
when nB log n = ω(m). However, in practice, in the pre-
computation of the first algorithm we often compute paths
in Xrisk that will not be used. Moreover, this requires testing
in advance which edges are in Xrisk, which is an expensive
operation in practice. This is demonstrated in Sec. .

Evaluation
In this section we visualize our cost function and demon-
strate the behavior of our algorithm. All algorithms were im-
plemented using the Open Motion Planning Library (OMPL
1.2.1) (Şucan, Moll, and Kavraki 2012) running on a
4.0-GHz Intel Core i7 processor with 16 GB of mem-
ory. Source code is publicly available at https://github.com/
personalrobotics/ompl rasp .

For each experiment, we constructed a roadmap and
precomputed for each vertex and each edge whether it is
collision-free and whether it is in the risk zone. This allows
us to compare the time that graph operations take for each
of the algorithms.

Our first set of experiments is motivated by the early
Viking sailing expeditions: For centuries, sailing was done
primarily by coastal navigation, where the sea vessel stayed
within sight of the coast. Gradually, the art of open-seas
navigation was developed, relying on more uncertain factors
such as visibility to the sun, moon and the stars. Thus, we
model the sea and the land as the free and forbidden regions,

(a) (b)

Figure 4: Navigating the seas: land masses are regarded as
obstacles, regions next to the coastal line (white) and open
seas (light blue) are Xsafe and Xrisk, respectively. We vi-
sualize paths produced using our cost function (solid blue),
shortest paths (dashed green), and minimal-risk paths (dot-
ted red). Figure best viewed in color.

(a) (b)

Figure 5: A disabled user moving a bottle using a robotic
arm in the presence of obstacles. The trajectory of the arm
moves between “safe” and “risk” regions where the bottle is
visible (colored green) and non-visible (colored red) to the
user, respectively. Snapshots are taken at intermediate points
along the path. (a) Shortest path. (b) Minimal-cost path.

respectively. Any point closer (further) than a predefined
distance from the shore is modelled as the safe (risk) region,
respectively.

Fig. 4 depicts maps with different queries. For each query,
we use a 201× 201 eight-connected grid as a roadmap. We
then compute the minimal-cost path computed using Eq. 2,
the shortest (Euclidean) paths and the minimal-risk path that
minimizes time spent in Xrisk. As we can see, our cost func-
tion serves as a natural interpolation between the two oppos-
ing metrics.

We present running times in Table 1. Computing
minimal-cost paths results in larger computation times when
compared to computing shortest paths. For our incremental-
based algorithm, this is roughly a 4× or 5× slowdown.
For our precomputation-based algorithm, this is slower by
a factor of several thousands. Not surprisingly, the lion’s
share of the algorithm’s running time is dedicated to com-
puting shortest paths between pairs of points on the bound-
ary of Xrisk.

Our second scenario is motivated by assistive robotics.
Consider a robot arm performing a task such as pouring juice
from a bottle, while receiving inputs from a user such as
when to stop pouring. During the motion, the robot’s end
effector is moving between regions that are either visible or
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Scenario Dijkstra Precomputation-based Incremental-based
Vikings (Fig. 4(a)) 0.03± 0.001 204.35± 8.73 0.11± 0.006
Vikings (Fig. 4(b)) 0.06± 0.004 207.42± 9.97 0.31± 0.034
Assistive Fig. 5 0.113± 0.008 — 0.003± 0.008

Table 1: Running time (in seconds) comparing Dijkstra, computing the shortest path, with our precomputation-based algorithm
(Sec. ) and our incremental algorithm (Sec. ) computing minimal-cost paths. For the precomputation-based algorithm, roughly
98% of the running time is spent on computing distances between pairs of boundary points on the Viking scenarios while on the
assistive care scenario it terminated due to insufficient memory. Times reported are the average over 50 different runs together
with one standard deviation.

occluded to the user.
Specifically, in this motion-planning problem configura-

tions in Xrisk are points occluded from the viewpoint of a
user sitting in a wheelchair. We computed a Halton graph
with 10,000 vertices (a typical-size roadmap in such motion-
planning settings) and ran Dijkstra’s algorithm as well as our
path-finding algorithms. Results, depicted in Fig. 5 demon-
strate how the shortest path traverses the risk zone for a long
duration while minimal-cost paths enter it for a short period
of time.

Timing results, reported in Table 1 show that our
incremental-based algorithm is actually faster than Dijk-
stra’s algorithm. This is because in this scene there is a large
risk region with high cost and a “narrow passage” that re-
duces risk exposure. Our cost function naturally guides the
search towards this promising region. In contrast, Dijkstra
searches in cost-to-come space and exposes more vertices.
Our precomputation-based algorithm, on the other hand, ter-
minated due to insufficient memory.

Conclusions and future work
Many interesting research questions arise from our problem
formulation. The first, relates to the roadmap generation:
Using (Karaman and Frazzoli 2011), we can describe the
necessary conditions for solutions obtained using PRM to
converge to an optimal solution. Applying the same anal-
ysis to our setting is not straightforward. This is partially
due to the fact that the proof used in (Karaman and Frazzoli
2011) assumes that the source and target configurations are
in the roadmap. Consider an optimal path γ∗ that passes in
and out of risk zones. A naive attempt to use the aforemen-
tioned proof is to subdivide the path into sections that are
fully contained within Xsafe and fully contained within Xrisk

and argue that asymptotically, the roadmap will converge to
each of these subpaths. However, the points where γ∗ moves
from Xsafe to Xrisk (and vice-versa) are not in the roadmap.
We believe, that under certain assumptions on the structure
of Xrisk this may be done but many details should be care-
fully addressed.

Since our problem is single-shot, a possible approach to
solve RAMP (and not dRAMP) is not to construct a roadmap
but a tree, rooted at the initial configuration. Here, an RRT*-
type algorithm (Karaman and Frazzoli 2011) may be used in
order to asymptotically converge to the optimal solution.

Another interesting question relates to the setting where
X ⊂ R

2, i.e., when planning is restricted to the plane. Here,
we are interested in understanding what complexity class

does our problem fall in. It is well known that planning
for shortest paths in the plane amid polygonal obstacles can
be computed in O(n log n) time, where n is the complexity
of the obstacles (see (Mitchell 2016) for a survey). When
computing shortest paths amid polyhedral obstacles in R

3,
or in R

2 when there are constraints on the curvature of the
path, the problem becomes NP-Hard (Canny and Reif 1987;
Kirkpatrick, Kostitsyna, and Polishchuk 2011). Further-
more, the Weighted Region Shortest Path Problem, which
is closely related to our problem (Sec. ), is unsolvable in
the Algebraic Computation Model over the Rational Num-
bers (De Carufel et al. 2014). If our problem is NP-Hard,
as we conjecture, then a reduction, possibly along the lines
of (Canny and Reif 1987) should be provided together with
an approximation algorithm. Here, a possible approach
would be to sample the boundary of Xrisk, similar to (Agar-
wal, Fox, and Salzman 2016).

Finally, our work assumed that the dimension of Xsafe

and Xrisk are d, the dimension of X . However, we envision
our cost function being used in situations where this assump-
tion does not hold. Consider compliant motion planning or
fine motion (Lozano-Perez, Mason, and Taylor 1984) where
a robot reduces uncertainty by making and maintaining con-
tact with the environment. Here, we would like to penalize
for not being in contact with an obstacle feature. Thus, Xsafe

induces a manifold of lower dimensionality than X which
raises many interesting questions.
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